High Frequency and

 High Power Reed Relays
DESCRIPTION

High voltage RF Reed Relays use a patented coil encapsulation, external electrostatic shields, and magnetic shields. For this series we use a special copper-plated Form A switch with a breakdown voltage up to 10 kVDC . The contacts are suitable for carrying current up to 3 Amps (5 Amps available) at 30 MHz .

APPLICATIONS

- Radio frequency technology
- Antenna tuning units
- Transmit / receive requirements

FEATURES

- Normally open contacts (Normally closed contacts are available)
- 5 Amps available

DIMENSIONS
All dimensions in mm [inch]

ORDER INFORMATION

Series	Nominal Voltage	Contact Form	Switch Model	Pin Out
HF	XX-	XX	$54-$	\mathbf{X}
Options	$05,12,24$	A, B		$5,6,7,8,9$

Part Number Example

HF05-1A54-6

05 is the nominal voltage
1A is the contact form
54 is the switch model
6 is the breakdown voltage (6 kVDC)

COIL DATA

Contact Form	Switch Model	Coil Voltage		Coil Resistance			Pull-in Voltage	Drop-out Volage	Nominal Coil Power
All Data at $20^{\circ} \mathrm{C}$		VDC		Ω			VDC	VDC	mW
		Nom.	Max.	Min.	Typ.	Max.	Max.	Min.	Typ.
1A	54	5	7.5	36	40	44	3.5	0.75	625
		12	16	225	250	275	8.4	1.8	575
		24	30	900	1000	1100	16.8	3.6	575
1B **		5	7.5	27	30	33	3.5	0.75	835
		12	16	153	170	187	8.4	1.8	850
		24	30	612	680	748	16.8	3.6	850

* The pull-in / drop-out voltage and coil resistance will change at rate of 0.4% per ${ }^{\circ} \mathrm{C}$.
** Re-closure of Form B may occur if the max. coil voltage is exceeded. Coil polarity on Form B must be observed. Pin five is positive.

PIN OUT

View from top of component 2.54 mm [$\left.0.10^{\prime \prime}\right]$ pitch grid

Pin \# 5 must be positive for Form B version

RELAY DATA

All Data at $20^{\circ} \mathrm{C}$	Switch Model \rightarrow Contact Form \rightarrow	Switch 54 Form A / B			
Contact Ratings	Conditions	Min.	Typ.	Max.	Unit
Switching Power	Any DC combination of V \& A not to exceed their individual max.'s			25	W
Switching Voltage	1 MHz to 30 MHz			500	V
Switching Current	1 MHz to 30 MHz			1.5	A
Carry Current	1 MHz to 30 MHz			5.0	A
Static Contact Resistance	w/ 0.5 V \& 10 mA			150	$\mathrm{m} \Omega$
Dynamic Contact Resistance	Measured w/ 0.5V \& 50mA 1.5 ms after closure			200	
Insulation Resistance across Contacts	Across contacts Contact to coil Coil to shield	$\begin{aligned} & 10^{10} \\ & 10^{10} \\ & 10^{10} \end{aligned}$			Ω
Breakdown Voltage across Contact	Across contacts Contact to coil Coil to shield	$\begin{aligned} & 10 \\ & 0.5 \end{aligned}$			kVDC
Operation Time incl. Bounce	Measured w/ 100 \% overdrive			3.0	ms
Release Time	Measured w/ no coil suppression			1.0	ms
Capacitance	Across contacts Contact to coil Coil to shield		$\begin{aligned} & 2.5 \\ & 10 \\ & 20 \end{aligned}$		pF
Life Expectancies					
Switching 5V-10 mA	DC only \& $<10 \mathrm{pF}$ stray cap.		50		$\begin{gathered} 10^{6} \\ \text { Cycles } \end{gathered}$
For other load requirements plea	e see our life test section on P. 120.				
Environmental Data					
Shock Resistance	$1 / 2$ sinus wave duration 11 ms			50	g
Vibration Resistance	From $10-2000$ Hz			20	g
Ambient Temperature	$10^{\circ} \mathrm{C} /$ minute max. allowable	-40		85	${ }^{\circ} \mathrm{C}$
Stock Temperature	$10^{\circ} \mathrm{C} /$ minute max. allowable	-40v		105	${ }^{\circ} \mathrm{C}$
Soldering Temperature	5 sec .			260	${ }^{\circ} \mathrm{C}$

