

LCD-Modul 4x20 - 6.45mm

INCL. CONTROLLER SSD1803

FEATURES

- * HIGH-CONTRAST LCD-SUPERTWIST DISPLAY
- * BLUE BACKGROUD WITH WHITE CHARACTERS
- * BLACK&WHITE FSTN
- * EXTREME COMPACT WITH 75mm WIDTH
- * BUILT-IN CONTROLLER SSD1803 (VERY SIMILAR TO HD44780)
- * 4- AND 8-BIT INTERFACE FOR DATABUS
- * SERIAL SPI-INTERFACE (SID, SOD, SCLK, CS)
- * POWER SUPPLY +3.3V / TYP. 4mA (w./o. B./L.)
- * OPERATING TEMP. RANGE -20..+70°C
- * AUTOMATIC TEMPERATURE COMPENSATION BUILT-IN
- * LED-BACKLIGHT WHITE, max. 75mA@+25°C
- * 16 ICONS (BATTERY, ARROWS ETC.) AT THE TOP EDGE
- * NO MONTING IS REQUIRED: JUST SOLDER INTO PCB
- * SINGLE ROW SOCKET AVAILABLE: EA B254-12 (1 PC.)
- * 128x64 GRAPHIC WITH SAME DIMENSION AND SAME PINOUT: EA DIP128

ORDERING INFORMATION

LCD-MODULE 4x20 - 6.45mm WITH LED-B./L. BLUE FSTN BLACK ON WHITE SOCKET 4.5mm HEIGHT, 12 POSITIONS (1 PC.)

EA DIP203B-6NLW
EA DIP203J-6NLW
EA B254-12

PINOUT

		4-/8-Bit Mode	e (Fact	ory Set)	
Pin	Symbol	Function		Pin	Symbol	Function
1	VSS	Power Supply 0V (GND)		13		not connected
2	VDD	Power Supply +3.3 V		14	VSS	Power Supply 0V (GND)
3	VCI	Contrast Adjustment		15	D0	Display Data, LSB
4	RES	L: Reset		16	D1	Display Data D1
5	RS	H=Data; L=Command		17	D2	Display Data D2
6	R/W	H=Read, L=Write		18	D3	Display Data D3
7	Е	Enable		19	D4 (D0)	Display Data D4
8		not connected		20	D5 (D1)	Display Data D5
9		not connected		21	D6 (D2)	Display Data D6
10		not connected		22	D7 (D3)	Display Data, MSB
11		not connected		23	Α	LED-B/L + (ext. Resistor requ)
12		not connected		24	С	LED-B/L -

		SPI Mode (Solder	r li	nk "	SPI" clos	sed)
Pin	Symbol	Function		Pin	Symbol	Funktion
1	VSS	Power Supply 0V (GND)		13		not connected
2	VDD	Power Supply +3.3V		14	VSS	Power Supply 0V (GND)
3	VCI	Contrast Adjustment		15	SOD	Data Out
4	RES	L: Reset		16		not connected
5	CS	Chip Select		17		not connected
6	SID	Data In		18		not connected
7	SCLK	Shift Clock		19		not connected
8		not connected		20		not connected
9		not connected		21		not connected
10		not connected		22		not connected
11		not connected		23	Α	LED-B/L + (ext. Resistor requ)
12		not connected		24	С	LED-B/L -

BACKLIGHT

Using the LED backlight requires an current source or external current-limiting resistor. Forward voltage for white LED backlight is 3.0~3.6V. Please take care of derating for T_a>+25°C

<u>Attention:</u> Do never drive backlight directly to VDD; this may damage backlight immediately! The blue display cannot be read without backlight. For direct sunlight we suggest to use the J-type.

TABLE OF COMMAND (SSD1803)

					(Cod	e						Execute
Instruction	RE Bit	RS	R/W	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Description	Time (270kHz)
Clear Display	*	0	0	0	0	0	0	0	0	0	1	Clears all display and returns the cursor to the nome position (Address 0).	1.53ms
Cursor At Home	0	0	0	0	0	0	0	0	0	1	*	Returns the Cursor to the home position (Address 0). Also returns the display being shifted to the original position. DD RAM contents remain unchanged.	1.53ms
Power Down Mode	1	0	0	0	0	0	0	0	0	1	PD	Set Pow er dow n mode bit. PD=0: pow erdow n mode disable PD=1: pow erdow n mode enable	39μs
	0	0	0	0	0	0	0	0	1	I/D	S	Cursor moving direction (VD=0: dec; VD=1: inc) shift enable bit (S=0: disable; S=1: enable shift)	39μs
Entry Mode Set	0	0	0	0	0	0	0	0	1	1	BID	Segment bidirectional function (BID=0: Seg1->Seg60; BID=1: Seg60->Seg1)	39µs
Display On/Off Control	0	0	0	0	0	0	0	1	D	С	В	D=0: display off; D=1: display on C=0: cursor off; C=1: cursor on B=0: blink off; B=1: blink on	39µs
extended Function Set	1	0	0	0	0	0	0	1	FW	ВW	NW	FW=0: 5-dot font w idth; FW=1: 6-dot font w idth BW=0: normal cursor; BW=1: inverting cursor WW=0: 1- or 2-line (see N); NW=1: 4-line display	39μs
Cursor / Display Shift	0	0	0	0	0	0	1	S/C	R/L	*	*	Moves the Cursor or shifts the display S/C=0: cursor Shift; S/C=1: display shift R/L=0: shift to left; R/L=1: shift to right	39μs
Scroll Enable	1	0	0	0	0	0	1	Н4	НЗ	H2	Н1	Determine the line for horizontal scroll	39µs
Function Set	0	0	0	0	0	1	DL	N	RE	DH	REV	sets interface data length (DL=0:4-bit; DL=1:8-bit) number of display lines (N=0: 1-line; N=1: 2-line) extension register (RE= 0/1) scroll/shift (DH=0: dot scroll; DH=1: display shift) reverse bit (REV=0:normal; REV=1:inverse display)	39µs
	1	0	0	0	0	1	DL	N	RE	BE	LP	CG-/SEG-RAM blink (BE=0: disable; BE=1: enable) LP=0: normal mode; LP=1: low power mode	39μs
CG RAM Address Set	0	0	0	0	1			Α	C			Sets the CG RAM address. CG RAM data is sent and received after this setting.	39µs
SEG RAM Address Set	1	0	0	0	1	*	*		Α	С		Sets the SEG RAM address. SEG RAM data is sent and received after this setting.	39µs
DD RAM Address Set	0	0	0	1				AC				Sets the DD RAM address. DD RAM data is sent and received after this setting.	39µs
Set Scroll Quantity	1	0	0	1	*			S	Q			Sets the quantity of horizontal dot scroll (DH=0)	39µs
Busy Flag / Address Read	*	0	1	BF				AC				Reads Busy flag (BF) indicating internal operation is being performed and reads address counter contents.	-
Write Data	*	1	0									Writes data into internal RAM (DD RAM / CG RAM / SEGRAM)	43µs
Read Data	*	1	1			F	Read	Dat	а			Reads data from internal RAM (DD RAM / CG RAM / SEGRAM)	43µs

SERIAL MODE SPI

Factory set for interface is parallel with 4 bit or 8 bit data bus. Alternative module can be programmes with serial data stream. For that solder link **SPI** has to be closed. Harware specification for serial operation mode is written down in user manual for SSD1803: http://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/ssd1803 2 0.pdf. Software for initialisation and programming keeps the same.

EA DIP203-6

new display design

			Exa	amp	ole (of i	nitia	alis	atic	n, t	3 bi	t m	ode and SPI
Command	RE Bit	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB3 DB2		DB0	Hex	Note
Function Set	0	0	0	0	0	1	1	0	0	0	0	\$30	8 bit data length, extension bit RE=0
Entry Mode Set	0	0	0	0	0	0	0	0	1	1	0	\$06	Cursor Auto-Increment
Function Set	0	0	0	0	0	1	1	0	1	1	0	\$36	8 bit data length, RE =1, blink enable BE =1
ext. Function Set	1	0	0	0	0	0	0	1	0	0	1	\$09	4 line mode
Set SEGRAM adr	1	0	0	0	1	0	0	0	0	0	0	\$40	con RAM adress: \$00
16 x Write Data	1	1	0	0	0	0	0	0	0	0	0		to clear all icons: write 16x \$00
Function Set	1	0	0	0	0	1	1	0	0	0	0	\$30	8 bit data length, bit RE =0
Display ON/OFF	0	0	0	0	0	0	0	1	1	1	1	\$0F	Display on, Cursor on, Cursor blink
Clear Display	0	0	0	0	0	0	0	0	0	0	1	\$01	Clear display, place cursor to 1st. col. /1st. row

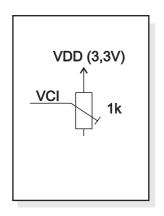
Adress:

 1st. line
 \$00..\$13

 2nd. line
 \$20..\$33

 3rd. line
 \$40..\$53

 4th. line
 \$60..\$73


Please make shure that software will check busy-flag before writing any command!

CHARACTER SET

Beside there's a copy of built.in character set. In addition to that up to 8 individual character can be created.

CONTRAST ADJUSTMENT

Contrast will be set by pin 3 (VCI). Module EA DIP203 comes with built-in temperature compensation for -20..+70°C as a standard; any contrast adjustment while operation is no longer required.

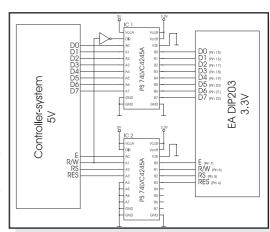
Unne																
Upper 4bit Lower 4bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	гннн	HLLL	HLLH	HLHL	нінн	HHLL	ннгн	ннні	нннн
LLLL	CG RAM (1)			Ø							B	Ď			4	Š
LLLH	(2)			1	Ħ			4		Ji	£.	\$.	H		÷	Ħ
LLHL	(3)			2		R			2		\$	Ŧ			Á	Ħ
LLHH	(4)	¥	Ħ	3							¥	T	n		Í	#
LHLL	(5)	«		4				ŧ.	4			X			Ó	ž
LHLH	(6)	*	X						5	T	Ě	П	Ë	£	Ú	
LHHL	(7)						Ħ								Ŷ	
ІННН	(8)			F							i	H				ř
HLLL	(1)		Ķ			×	h	*	8		Ď				Í	
нггн	(2)		Þ									ø			ğ	蓋
HLHL	(3)		#				.I		×	K					Ü	
нінн	(4)	Ŧ			K	Ħ	k		¥	Þ	Ø			Ę		*
HHLL	(5)	Ħ		€.		Ö				œ	ø	Ħ	İ			
ннгн	(6)				Ħ	K	m	Ħ				æ				×
нннг	(7)			Þ	H		H		Š	8	Ä	Ħ	***	#		
нннн	(8)		*	7		B				80		Ë	٠	*		¥

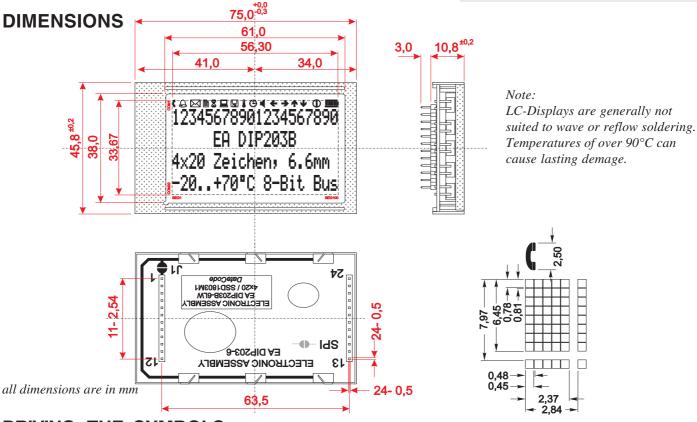
CREATING YOUR OWN CHARACTERS

All these character display modules got the feature to create 8 own characters (ASCII Codes 0..7) in addition to the 240 ROM fixed codes.

- 1.) The command "CG RAM Address Set" defines the ASCII code (Bit 3,4,5) and the dot line (Bit 0,1,2) of the new character. Example demonstrates creating ASCII code \$00.
- 2.) Doing 8 times the write command "Data Write" defines line by line the new character. 8th. byte stands for the cursor line.
- 3.) The new defined character can be used as a "normal" ASCII code (0..7); use with "DD RAM Address Set" and "Data Write".

		S	et C	G I	RA	M	Add	Ires	ss								Da	ata			
			٨	ماده		_			Llev							В	it				Hex
			А	dre	SSE	3			Hex				7	6	5	4	3	2	1	0	пех
						0	0	0	\$40							0	0	1	0	0	\$04
						0	0	1	\$41							0	0	7	0	0	\$04
						0	1	0	\$42							0	0	1	0	0	\$04
	0		^	^	^	0	1	1	\$43				Х	v	v	0	0	1	0	0	\$04
,	U	'	0	U	0	1	0	0	\$44				^	^	^	•	0	-	0	-	\$15
						1	0	1	\$45							0	-	•	~	0	\$0E
						1	1	0	\$46							0	0	-	0	0	\$04
						1	1	1	\$47							0	0	0	0	0	\$00

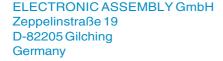

DRIVING WITH 5V-SYSTEMS


The supply voltage of the display is necessarily 3.3V. If a 5V-system is used, the level have to be adapted.

For example you can use a biderectional levelshifter (e.g. PS 74LVC4245A), like shown in the opposite figure.

COMPATIBILITY WITH EA DIP204-6

The displays of EA DIP203 and EA DIP204 series are electrically and mechanically identical to each other running with 3.3V supply mode. Merely a 5V supply is not acceptable with the new EA DIP203 series.


DRIVING THE SYMBOLS

After power-on symbols will be set accidental. To switch off them all please refer to the example of initializing on page 3. To display an individual symbol have a look at the program example at the right.

Each symbol can be displayed in normal (solid) and blinking style.

		E	xam	ple	pr	ogr	am	to	dis	pla	y ar	ico	on (8 bit / SPI)
Command	RE Bit	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Note
Busy-Flag / Address read	0	0	1	BF				AC					perhaps store current DDRAM adress: read AC and save as LASTADR=AC
Function Set	0	0	0	0	0	1	1	0	1	1	0	\$36	Set to 8 bit data length, RE=1, Blink enable BE=1
Set SEGRAM adr	1	0	0	0	1	0	0	0	0	1	0	\$42	Set Icon-RAM adress to \$02 (letter symbol)
Write Data	1	1	0	0	0	0	1	0	0	0	0	\$10	Write \$10 to display symbol
Function Set	1	0	0	0	0	1	1	0	0	0	0	\$30	Set to 8 bit data length, extension bit RE=0
Set DDRAM adr	0	0	0	1			L	ASTAE	DR			\$80	Restore DDRAM adress

	lcon - Symbols																			
																Ų				
SEGRAM address	\$00	\$01	\$02	\$03	\$04	\$05	\$06	\$07	\$08	\$09	\$0A	\$0B	\$0C	\$0D	\$0E	\$0F	\$0F	\$0F	\$0F	\$0F
data solid	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$10	\$1F	\$1E	\$1C	\$18	\$10
data blink (BE=1!)	ata blink (BE=1!) \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50														\$50					

Fon: +49 (0)8105-778090 Fax: +49 (0)8105-778099 e-Mail: info@lcd-module.de Web: www.lcd-module.com

