

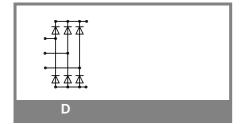
SEMITOP [®]	2
----------------------	---

Bridge Rectifier

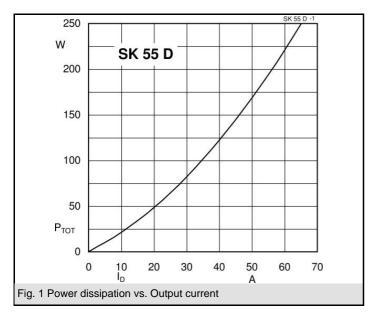
SK 55 D

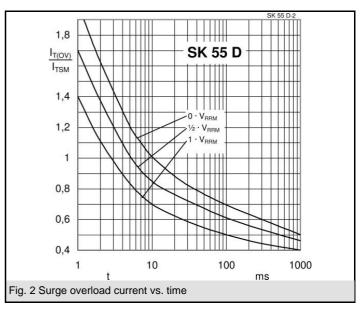
Preliminary Data

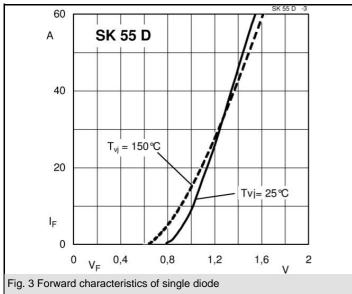
Features

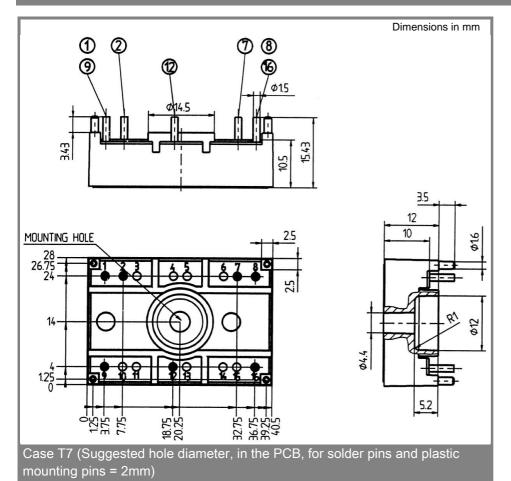

- Compact design
- · One screw mounting
- Heat transfer and insulation through direct copper bonded aluminium oxide ceramic (DCB
- Up to 1600V reverse voltage
- High surge currents
- Glass passived diodes chips
- UL recognized, file no. E 63 532

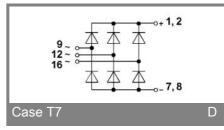
Typical Applications


- Input rectifier for power supplies
- Rectifier


V _{RSM}	V_{RRM}, V_{DRM}	I _D = 55 A (full conduction)
V	V	(T _s = 80 °C)
800	800	SK 55 D 08
1200	1200	SK 55 D 12
1600	1600	SK 55 D 16


Symbol	Conditions	Values	Units
I _D	T _s = 80 °C	55	Α
I_D	T _s = 100 °C	45	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	220	Α
	T _{vi} = 150 °C; 10 ms	200	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,310 \text{ms}$	242	A²s
	T _{vj} = 150 °C; 8,310 ms	200	A²s
V _F	T _{vi} = 25 °C; I _F = 25 A	max. 1,25	V
$V_{(TO)}$	T _{vi} = 150 °C	max. 0,8	V
r _T	T _{vi} = 150 °C	max. 13	mΩ
I _{RD}	$T_{vi} = 150 ^{\circ}\text{C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 4	mA
			mA
R _{th(j-s)}	per diode	2,15	K/W
tritj-5)	per module	0,36	K/W
T _{solder}	terminals, 10s	260	°C
T _{vj}		-40+150	°C
T _{stg}		-40+125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 (2500)	V
M _s	mounting torque to heatsink	2	Nm
M_t			
m	approx. weight	19	g
Case	SEMITOP® 2	T 7	


SK 55 D



SK 55 D

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.