

Ferrites and accessories

ETD 44/22/15 Core and accessories

Series/Type: B66365, B66366

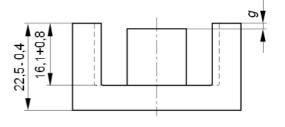
Date: September 2006, December 2008

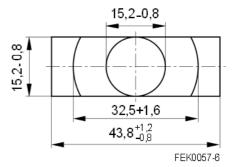
ETD 44/22/15

Core B66365

To IEC 61185

For SMPS transformers with optimum weight/performance ratio at small volume


Delivery mode: single units


Magnetic characteristics (per set)

 $\Sigma I/A = 0.6 \text{ mm}^{-1}$ $I_{e} = 103 \text{ mm}$ $A_{e} = 173 \text{ mm}^{2}$

 $A_{min} = 172 \text{ mm}^2$ $V_{e} = 17800 \text{ mm}^3$

Approx. weight 94 g/set

Ungapped

Material	A _L value nH	$\mu_{\rm e}$	P _V W/set	Ordering code
N27	3300 +30/–20%	1560	< 3.48 (200 mT, 25 kHz, 100 °C)	B66365G0000X127
N87	3500 +30/–20%	1650	< 9.40 (200 mT, 100 kHz, 100 °C)	B66365G0000X187
N97	3600 +30/–20%	1720	< 8.00 (200 mT, 100 kHz, 100 °C)	B66365G0000X197

Gapped

Material	g mm	A _L value approx. nH	$\mu_{ ext{e}}$	Ordering code ** = 27 (N27) = 87 (N87)
N27,	0.20 ±0.02	862	407	B66365G0200X1**
N87	0.50 ±0.05	438	207	B66365G0500X1**
	1.00 ±0.05	262	124	B66365G1000X1**
	1.50 ±0.05	194	92	B66365G1500X1**

The A_L value in the table applies to a core set comprising one ungapped core (dimension g = 0) and one gapped core (dimension g > 0).

ETD 44/22/15

Core B66365

Calculation factors (for formulas, see "E cores: general information")

Material	Relationship between air gap – A _L value		Calculation of saturation current			
	K1 (25 °C)	K2 (25 °C)	K3 (25 °C)	K4 (25 °C)	K3 (100 °C)	K4 (100 °C)
N27	262	-0.74	420	-0.847	391	-0.865
N87	262	-0.74	420	-0.796	382	-0.873

Validity range: K1, K2: 0.10 mm < s < 3.50 mm

K3, K4: 110 nH < A_L < 1060 nH

ETD 44/22/15

Accessories B66366

Coil former

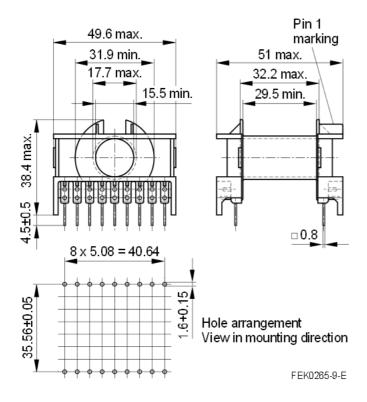
Material: GFR polyterephthalate, UL 94 V-0, insulation class to IEC 60085:

B66366B: F ≙ max. operating temperature 155 °C, color code black

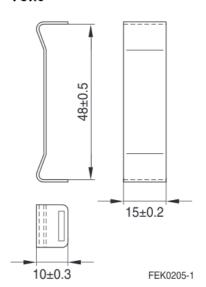
Valox 420-SE0® [E45329 (M)], GE PLASTICS B V

Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s

Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s


Winding: see Data Book 2007, chapter "Processing notes, 2.1"

Yoke


Material: Stainless spring steel (0.4 mm)

Coil former		Ordering code			
Sections	A _N mm ²	I _N mm	A _R ∨alue μΩ	Pins	
1	210	77.7	12.7	18	B66366B1018T001 B66366W1018T001
Yoke (orderi	ng code per pie	B66366A2000X000			

Coil former

Yoke

Ferrites and accessories

Cautions and warnings

Mechanical stress and mounting

Ferrite cores have to meet mechanical requirements during assembling and for a growing number of applications. Since ferrites are ceramic materials one has to be aware of the special behavior under mechanical load.

As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads can cause cracks or failure of the ferrite cores.

For detailed information see Data Book 2007, chapter "General – Definitions, 8.1".

Effects of core combination on A_L value

Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent that the initial permeability is dependent on the stress state of the core. The higher the stresses are in the core, the lower is the value for the initial permeability. Thus the embedding medium should have the greatest possible elasticity.

For detailed information see Data Book 2007, chapter "General – Definitions, 8.2".

Heating up

Ferrites can run hot during operation at higher flux densities and higher frequencies.

NiZn-materials

The magnetic properties of NiZn-materials can change irreversible in high magnetic fields.

Processing notes

- The start of the winding process should be soft. Else the flanges may be destroid.
- To strong winding forces may blast the flanges or squeeze the tube that the cores can no more be mount.
- To long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement.
- Not following the processing notes for soldering of the J-leg terminals may cause solderability problems at the transformer because of pollution with Snoxyd of the tin bath or burned insulation of the wire. For detailed information see Data Book 2007, chapter "Processing notes, 2.2".
- The dimensions of the hole arrangement have fixed values and should be understood as a recommendation for drilling the printed circuit board. For dimensioning the pins, the group of holes can only be seen under certain conditions, as they fit into the given hole arrangement. To avoid problems when mounting the transformer, the manufacturing tolerances for positioning the customers' drilling process must be considered by increasing the hole diameter.