www.ti.com

SNOSBT3H-JANUARY 2000-REVISED MARCH 2013

LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers

Check for Samples: LM158-N, LM258-N, LM2904-N, LM358-N

FEATURES

- Available in 8-Bump DSBGA Chip-Sized Package, (See AN-1112 (SNVA009))
- **Internally Frequency Compensated for Unity** Gain
- Large DC Voltage Gain: 100 dB
- Wide Bandwidth (Unity Gain): 1 MHz (Temperature Compensated)
- Wide Power Supply Range:
 - Single Supply: 3V to 32V
 - Or Dual Supplies: ±1.5V to ±16V
- **Very Low Supply Current Drain (500** μA)—Essentially Independent of Supply Voltage
- Low Input Offset Voltage: 2 mV
- Input Common-Mode Voltage Range Includes Ground
- Differential Input Voltage Range Equal to the **Power Supply Voltage**
- **Large Output Voltage Swing**

UNIQUE CHARACTERISTICS

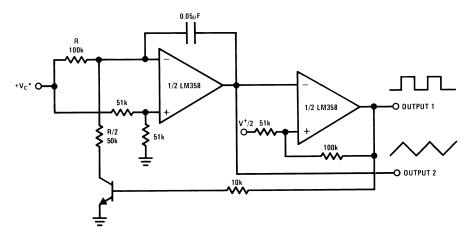
- In the Llinear Mode the Input Common-Mode Voltage Range Includes Ground and the Output Voltage Can Also Swing to Ground, even though Operated from Only a Single Power Supply Voltage.
- The Unity Gain Cross Frequency is Temperature Compensated.
- The Input Bias Current is also Temperature Compensated.

ADVANTAGES

- Two Internally Compensated Op Amps
- **Eliminates Need for Dual Supplies**
- Allows Direct Sensing Near GND and Vout Also Goes to GND
- Compatible with All Forms of Logic
- **Power Drain Suitable for Battery Operation**

DESCRIPTION

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.


Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.

The LM358 and LM2904 are available in a chip sized package (8-Bump DSBGA) using TI's DSBGA package technology.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Voltage Controlled Oscillator (VCO)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS(1)(2)

		LM158/LM258/LM358	LM2904
		LM158A/LM258A/LM3 58A	
Supply Voltage, V ⁺		32V	26V
Differential Input Voltage		32V	26V
Input Voltage		-0.3V to +32V	-0.3V to +26V
Power Dissipation (3)			
PDIP (P)		830 mW	830 mW
TO-99 (LMC)		550 mW	
SOIC (D)		530 mW	530 mW
DSBGA (YPB)		435mW	
Output Short-Circuit to GND (One Amplifier) (4)	$V^+ \le 15V$ and $T_A = 25^{\circ}C$	Continuous	Continuous
Input Current (V _{IN} < -0.3V) ⁽⁵⁾		50 mA	50 mA
Operating Temperature Range			
LM358		0°C to +70°C	-40°C to +85°C
LM258		−25°C to +85°C	
LM158		−55°C to +125°C	
Storage Temperature Range		−65°C to +150°C	−65°C to +150°C
Lead Temperature, PDIP (P)			
(Soldering, 10 seconds)		260°C	260°C
Lead Temperature, TO-99 (LMC)			
(Soldering, 10 seconds)		300°C	300°C
Soldering Information			
PDIP Package (P)			
Soldering (10 seconds)		260°C	260°C
SOIC Package (D)			
Vapor Phase (60 seconds)		215°C	215°C
Infrared (15 seconds)		220°C	220°C
ESD Tolerance ⁽⁶⁾		250V	250V

- (1) Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.
- (2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
- (3) For operating at high temperatures, the LM358/LM358A, LM2904 must be derated based on a +125°C maximum junction temperature and a thermal resistance of 120°C/W for PDIP, 182°C/W for TO-99, 189°C/W for SOIC package, and 230°C/W for DSBGA, which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM258/LM258A and LM158/LM158A can be derated based on a +150°C maximum junction temperature. The dissipation is the total of both amplifiers—use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
- (4) Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
- (5) This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V+voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at 25°C).
- (6) Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

ELECTRICAL CHARACTERISTICS

 $V^+ = +5.0V$, unless otherwise stated

Parameter	Conditions		LM15	8A		LM35	8A	LN	1158/L	.M258	Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	⁽¹⁾ , T _A = 25°C		1	2		2	3		2	5	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$, $T_A = 25^{\circ}C$,		20	50		45	100		45	150	nA
	$V_{CM} = 0V,^{(2)}$										
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V, T_A = 25^{\circ}C$		2	10		5	30		3	30	nA
Input Common-Mode	$V^+ = 30V,^{(3)}$	0		V ⁺ −1.5	0		V+−1.5	0		V+−1.5	V
Voltage Range	(LM2904, $V^+ = 26V$), $T_A = 25$ °C	0		V -1.5	U		V -1.5	U		V -1.5	V
Supply Current	Over Full Temperature Range										
	$R_L = \infty$ on All Op Amps										
	$V^+ = 30V \text{ (LM2904 } V^+ = 26V)$		1	2		1	2		1	2	mA
	V ⁺ = 5V		0.5	1.2		0.5	1.2		0.5	1.2	mA

- V_O ≈ 1.4V, R_S = 0Ω with V⁺ from 5V to 30V; and over the full input common-mode range (0V to V⁺ −1.5V) at 25°C. For LM2904, V⁺ from 5V to 26V.
- (2) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- (3) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V⁺ -1.5V (at 25°C), but either or both inputs can go to +32V without damage (+26V for LM2904), independent of the magnitude of V⁺.

ELECTRICAL CHARACTERISTICS

 $V^+ = +5.0V$, unless otherwise stated

Parameter	Conditions		in Typ Max Min Typ 2 7 2 45 250 45 5 50 5	LM2904	ļ	Units		
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	See ⁽¹⁾ , T _A = 25°C		2	7		2	7	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$, $T_A = 25$ °C, $V_{CM} = 0$ V, $See^{(2)}$		45	250		45	250	nA
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V, T_A = 25^{\circ}C$		5	50		5	50	nA
Input Common-Mode Voltage Range	V ⁺ = 30V, See ⁽³⁾ (LM2904, V ⁺ = 26V), T _A = 25°C	0			0		V ⁺ −1. 5	V
Supply Current	Over Full Temperature Range							
	R _L = ∞ on All Op Amps							
	V ⁺ = 30V (LM2904 V ⁺ = 26V)		1	2		1	2	mA
	V ⁺ = 5V		0.5	1.2		0.5	1.2	mA

- (1) V_O ≈ 1.4V, R_S = 0Ω with V⁺ from 5V to 30V; and over the full input common-mode range (0V to V⁺ −1.5V) at 25°C. For LM2904, V⁺ from 5V to 26V.
- (2) The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- (3) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V⁺ −1.5V (at 25°C), but either or both inputs can go to +32V without damage (+26V for LM2904), independent of the magnitude of V⁺.

ELECTRICAL CHARACTERISTICS

 $V^+ = +5.0V$, See⁽¹⁾, unless otherwise stated

Daramete		Conditio		ı	LM158/	4	ı	LM358	4	LM	158/LN	258	Units		
Paramete	e r	Conditio	ns	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max			
Large Signal Volt Gain	age	$V^{+} = 15V, T_{A} = 25^{\circ}C,$ $R_{L} \ge 2 \text{ k}\Omega, (\text{For } V_{O} = 1)^{\circ}$	V to 11V)	50	100		25	100		50	100		V/mV		
Common-Mode		$T_A = 25^{\circ}C$,		70	85		65	85		70	85		dB		
Rejection Ratio		$V_{CM} = 0V \text{ to } V^+ - 1.5V$		70	65		65	65		70	65		uБ		
Power Supply		$V^{+} = 5V \text{ to } 30V$		65	100		65	100		65	100	100			
Rejection Ratio		(LM2904, $V^+ = 5V$ to 26	$6V$), $T_A = 25$ °C												
Amplifier-to-Ampl Coupling	lifier	f = 1 kHz to 20 kHz, T _A Referred), See ⁽²⁾	= 25°C (Input		-120			-120			-120		dB		
Output Current	Source	$V_{IN}^+ = 1V$,													
		$V_{IN}^- = 0V$,		20	40		20	40		20	40		A		
		V ⁺ = 15V,		20	40		20	40		20	40		mA		
		V _O = 2V, T _A = 25°C													
	Sink	$V_{IN}^- = 1V, V_{IN}^+ = 0V$													
		$V^+ = 15V, T_A = 25^{\circ}C,$		10	20		10	20		10	20		mA		
		V _O = 2V													
		$V_{IN}^- = 1V$,													
		$V_{IN}^+ = 0V$		12	50		12	50		12	50				
		$T_A = 25^{\circ}C, V_O = 200 \text{ m}$	ıV,	12	50		12	50		12	50		μA		
		V ⁺ = 15V													
Short Circuit to G	round	T _A = 25°C, See ⁽³⁾ , V ⁺ =	= 15V		40	60		40	60		40	60	mA		
Input Offset Volta	ige	See ⁽⁴⁾				4			5			7	mV		
Input Offset Volta	ge Drift	$R_S = 0\Omega$			7	15		7	20		7		μV/°C		
Input Offset Curre	ent	$I_{IN(+)} - I_{IN(-)}$				30			75			100	nA		
Input Offset Curre	ent Drift	$R_S = 0\Omega$			10	200		10	300		10		pA/°C		
Input Bias Currer	nt	I _{IN(+)} or I _{IN(-)}			40	100		40	200		40	300	nA		
Input Common-M Voltage Range	lode	$V^+ = 30 \text{ V}, \text{ See}^{(5)} \text{ (LM2)}$	/ ⁺ = 30 V, See ⁽⁵⁾ (LM2904, V ⁺ = 26V)			V+-2	0		V+-2	0		V+-2	٧		
arge Signal Voltage V ⁺ = +15V															
Gain		$(V_O = 1V \text{ to } 11V)$		25			15			25			V/mV		
		R _L ≥ 2 kΩ													
Output	V _{OH}	V ⁺ = +30V	$R_L = 2 k\Omega$	26			26			26			V		
Voltage		(LM2904, V ⁺ = 26V)	$R_L = 10 \text{ k}\Omega$	27	28		27	28		27	28		V		
Swing	V _{OL}	$V^{+} = 5V, R_{L} = 10 \text{ k}\Omega$		5	20		5	20		5	20	mV			

Copyright © 2000–2013, Texas Instruments Incorporated

⁽¹⁾ These specifications are limited to $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$ for the LM158/LM158A. With the LM258/LM258A, all temperature specifications are limited to $-25^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$, the LM358/LM358A temperature specifications are limited to $0^{\circ}\text{C} \le T_{A} \le +70^{\circ}\text{C}$, and the LM2904 specifications are limited to $-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$.

⁽²⁾ Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

⁽³⁾ Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

⁽⁴⁾ $V_O \approx 1.4V$, $R_S = 0\Omega$ with V⁺ from 5 \dot{V} to 30V; and over the full input common-mode range (0V to V⁺ -1.5V) at 25°C. For LM2904, V⁺ from 5V to 26V.

⁽⁵⁾ The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V⁺ −1.5V (at 25°C), but either or both inputs can go to +32V without damage (+26V for LM2904), independent of the magnitude of V⁺.

ELECTRICAL CHARACTERISTICS (continued)

 $V^+ = +5.0V$, See⁽¹⁾, unless otherwise stated

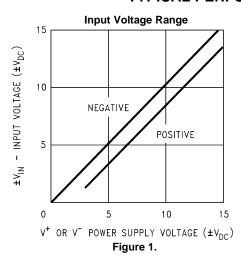
Paramete		Conditions	I	_M158/	4	L	_M358 <i>A</i>	١	LM	158/LM	258	Units
Faramete	ŧI	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Output Current	Source	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V,$	10	20		10	20		10	20		mA
		$V^{+} = 15V, V_{O} = 2V$	10	20		10	20		10	20		ША
	Sink	$V_{IN}^- = +1V, V_{IN}^+ = 0V,$	10	15		_	8		E	8		mA
		$V^{+} = 15V, V_{O} = 2V$	10	13		5	0		5	0		IIIA

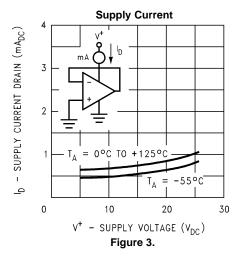
ELECTRICAL CHARACTERISTICS

 $V^+ = +5.0V$, See⁽¹⁾, unless otherwise stated

Donomoton		Conditions		LM358			LM2904		Units
Parameter		Conditions	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage		V ⁺ = 15V, T _A = 25°C,							
Gain		$R_L \ge 2 \text{ k}\Omega$, (For $V_O = 1V \text{ to } 11V$)	25	100		25	100		V/mV
Common-Mode		T _A = 25°C,	C.F.	0.5			70		-ID
Rejection Ratio		V _{CM} = 0V to V ⁺ -1.5V	65	85		50	70		dB
Power Supply		V ⁺ = 5V to 30V	65	100		50	100		dB
Rejection Ratio		(LM2904, $V^+ = 5V$ to 26V), $T_A = 25^{\circ}C$							
Amplifier-to-Amplifier C	oupling	f = 1 kHz to 20 kHz, T _A = 25°C (Input Referred), See ⁽²⁾		-120			-120		dB
Output Current	Source	$V_{IN}^+ = 1V$,							
		V _{IN} ⁻ = 0V,	00	40		00	40		A
		V ⁺ = 15V,	20	40		20	40		mA
		V _O = 2V, T _A = 25°C							
	Sink	$V_{IN}^- = 1V, V_{IN}^+ = 0V$							
		V ⁺ = 15V, T _A = 25°C,	10	20		10	20		mA
		$V_O = 2V$							
		$V_{IN}^- = 1V$,							
		$V_{IN}^+ = 0V$	12	50		12	50		
		$T_A = 25$ °C, $V_O = 200$ mV,	12	50		12	50		μA
		V ⁺ = 15V							
Short Circuit to Ground		$T_A = 25$ °C, See ⁽³⁾ , V ⁺ = 15V		40	60		40	60	mA
Input Offset Voltage		See ⁽⁴⁾			9			10	mV
Input Offset Voltage Dr	ift	$R_S = 0\Omega$		7			7		μV/°C
Input Offset Current		$I_{IN(+)} - I_{IN(-)}$			150		45	200	nA
Input Offset Current Dr	ift	$R_S = 0\Omega$		10			10		pA/°C
Input Bias Current		$I_{IN(+)}$ or $I_{IN(-)}$		40	500		40	500 nA	
Input Common-Mode Voltage Range		V ⁺ = 30 V, See ⁽⁵⁾ (LM2904, V ⁺ = 26V)	0		V+-2	0		V+ -2	V

- (1) These specifications are limited to $-55^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$ for the LM158/LM158A. With the LM258/LM258A, all temperature specifications are limited to $-25^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$, the LM358/LM358A temperature specifications are limited to $0^{\circ}\text{C} \le T_{A} \le +70^{\circ}\text{C}$, and the LM2904 specifications are limited to $-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$.
- (2) Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
- (3) Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V⁺. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
- (4) $V_O \approx 1.4V$, $R_S = 0\Omega$ with V⁺ from 5V to 30V; and over the full input common-mode range (0V to V⁺ -1.5V) at 25°C. For LM2904, V⁺ from 5V to 26V.
- (5) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V⁺ −1.5V (at 25°C), but either or both inputs can go to +32V without damage (+26V for LM2904), independent of the magnitude of V⁺.


ELECTRICAL CHARACTERISTICS (continued)


 $V^+ = +5.0V$, See⁽¹⁾, unless otherwise stated

Danamata		Canditia		LM358			LM2904		Units	
Parametei	7	Condition	ns	Min	Тур	Max	Min	Тур		
Large Signal Voltage	Gain	V ⁺ = +15V	V ⁺ = +15V							
		(V _O = 1V to 11V)	15			15			V/mV	
		$R_L \ge 2 k\Omega$								
Output	V _{OH}	V ⁺ = +30V	$R_L = 2 k\Omega$	26			22			V
Voltage		$(LM2904, V^+ = 26V)$	$R_L = 10 \text{ k}\Omega$	27	28		23	24		V
Swing	V _{OL}	$V^{+} = 5V, R_{L} = 10 \text{ k}\Omega$			5	20		5	100	mV
Output Current	Source	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V,$		10	20		10	20		mA
		$V^+ = 15V, V_O = 2V$		10	20		10	20		MA
	Sink	$V_{IN}^- = +1V, V_{IN}^+ = 0V,$		- 5	8		5	8		mA
		$V^+ = 15V, V_O = 2V$		5	0		5	0		IIIA

TYPICAL PERFORMANCE CHARACTERISTICS

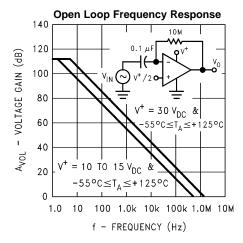
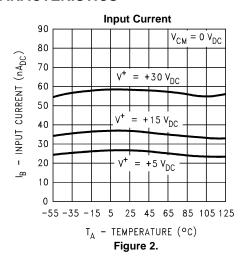
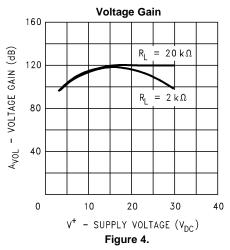
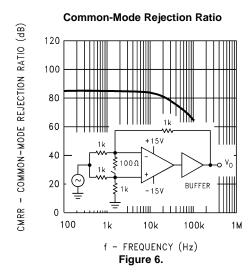
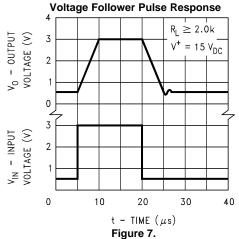
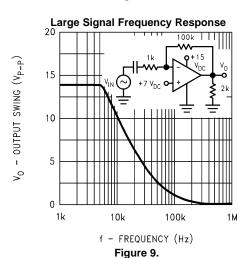
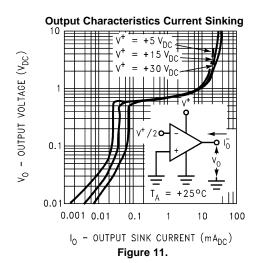
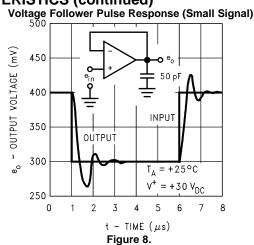





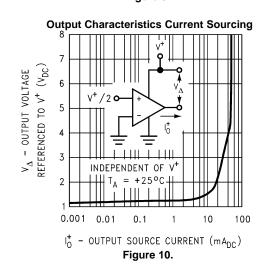
Figure 5.

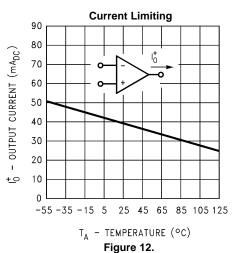


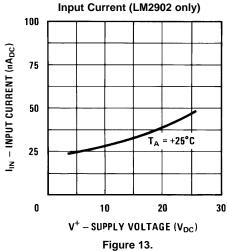


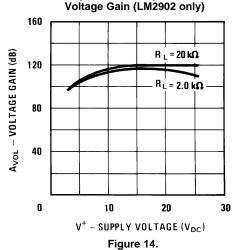





TYPICAL PERFORMANCE CHARACTERISTICS (continued)







TYPICAL PERFORMANCE CHARACTERISTICS (continued) ut Current (LM2902 only) Voltage Gain (LM2902 only)

APPLICATION HINTS

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 V_{DC} . These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_{DC} .

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

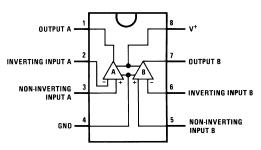
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3~V_{DC}$ (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of 3 V_{DC} to 30 V_{DC} .


Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive function temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see TYPICAL PERFORMANCE CHARACTERISTICS) than a standard IC op amp.

The circuits presented in the TYPICAL SINGLE-SUPPLY APPLICATIONS emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V⁺/2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Copyright © 2000–2013, Texas Instruments Incorporated

CONNECTION DIAGRAM

OUTPUT A 1 7 OUTPUT B

INVERTING 2 6 INVERTING INPUT B

NON-INVERTING 3 4 5 NON-INVERTING INPUT B

Figure 15. PDIP/CDIP/SOIC Package – Top View (See Package Number P, NAB0008A, or D)

Figure 16. TO-99 Package – Top View (See Package Number LMC)

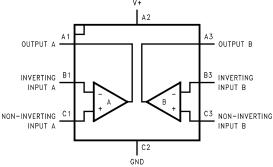
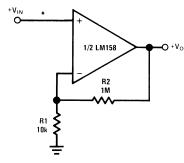
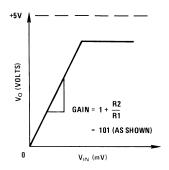
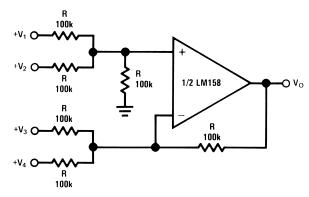



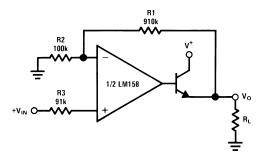
Figure 17. 8-Bump DSBGA - Top View, Bump Side Down (See Package Number YPB0008AAA)


TYPICAL SINGLE-SUPPLY APPLICATIONS

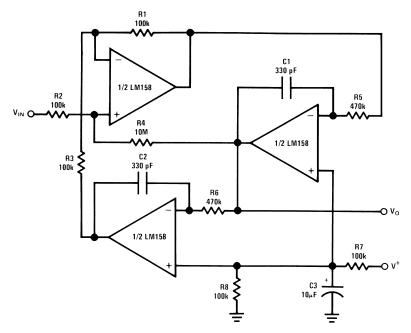
 $(V^+ = 5.0 V_{DC})$


Figure 18. Non-Inverting DC Gain (0V Output)

*R not needed due to temperature independent I_{IN}



Where: $V_O = V_1 + V_2 - V_3 - V_4$ $(V_1 + V_2) \ge (V_3 + V_4)$ to keep $V_O > 0$ V_{DC}


Figure 19. DC Summing Amplifier $(V_{\text{IN'S}} \ge 0 \ V_{\text{DC}} \text{ and } V_{\text{O}} \ge 0 \ V_{\text{DC}})$

 V_{O} = 0 V_{DC} for V_{IN} = 0 V_{DC} A_{V} = 10

Figure 20. Power Amplifier

 $f_0 = 1 \text{ kHz}$ Q = 50 $A_v = 100 (40 \text{ dB})$

Figure 21. "BI-QUAD" RC Active Bandpass Filter

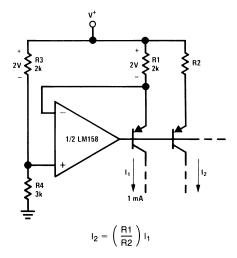


Figure 22. Fixed Current Sources

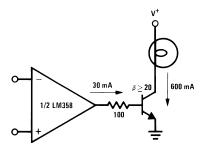


Figure 23. Lamp Driver

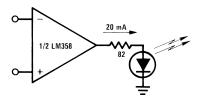
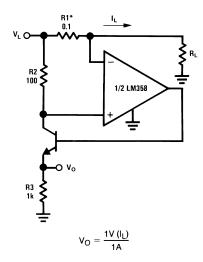



Figure 24. LED Driver

*(Increase R1 for I_L small) $V_L \le V^+ -2V$

Figure 25. Current Monitor

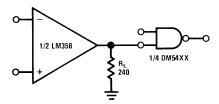
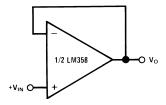



Figure 26. Driving TTL

 $V_O = V_{IN}$

Figure 27. Voltage Follower

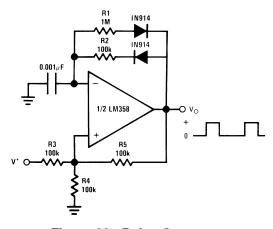


Figure 28. Pulse Generator

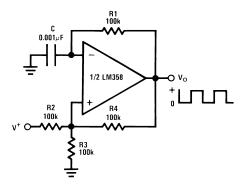


Figure 29. Squarewave Oscillator

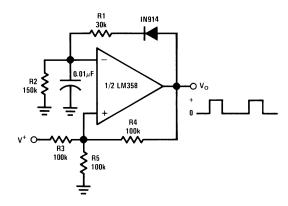


Figure 30. Pulse Generator

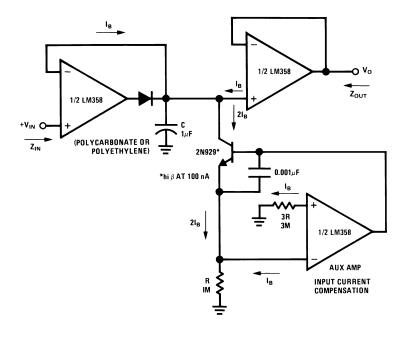
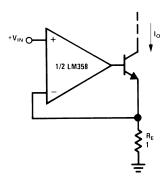



Figure 31. Low Drift Peak Detector

Submit Documentation Feedback

 $\begin{array}{c} \text{HIGH } Z_{\text{IN}} \\ \text{LOW } Z_{\text{OUT}} \end{array}$

 $I_O = 1$ amp/volt V_{IN} (Increase R_E for I_O small)

Figure 32. High Compliance Current Sink

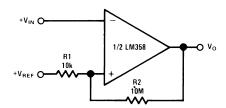
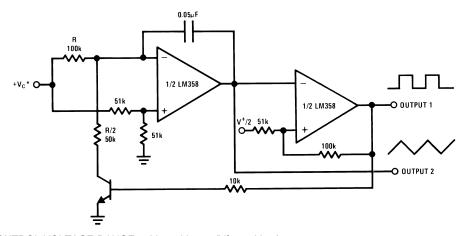



Figure 33. Comparator with Hysteresis

*WIDE CONTROL VOLTAGE RANGE: 0 $V_{DC} \le V_C \le 2 (V^+ -1.5 V_{DC})$

Figure 34. Voltage Controlled Oscillator (VCO)

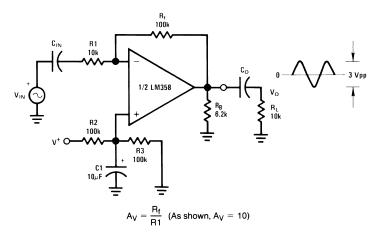
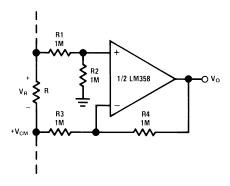
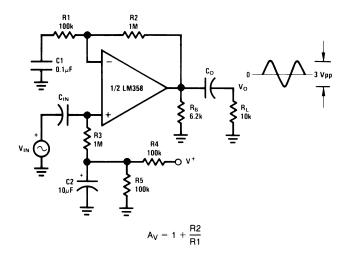
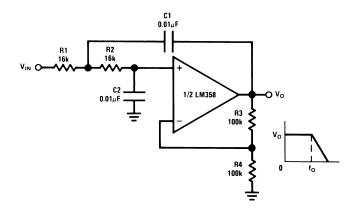
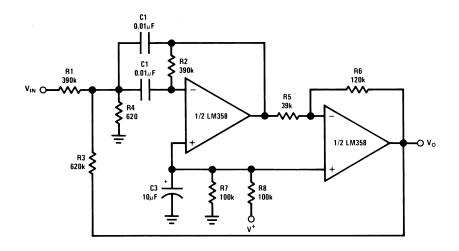


Figure 35. AC Coupled Inverting Amplifier


Figure 36. Ground Referencing a Differential Input Signal

 $A_v = 11$ (As Shown)


Figure 37. AC Coupled Non-Inverting Amplifier

 $f_o = 1 \text{ kHz}$ Q = 1 $A_V = 2$

Figure 38. DC Coupled Low-Pass RC Active Filter

 $f_o = 1 \text{ kHz}$ Q = 25

Figure 39. Bandpass Active Filter

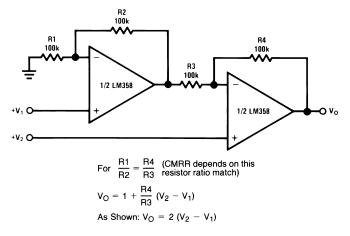


Figure 40. High Input Z, DC Differential Amplifier

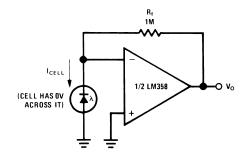


Figure 41. Photo Voltaic-Cell Amplifier

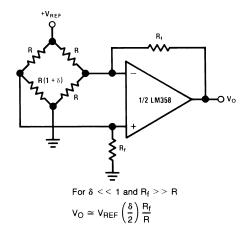


Figure 42. Bridge Current Amplifier

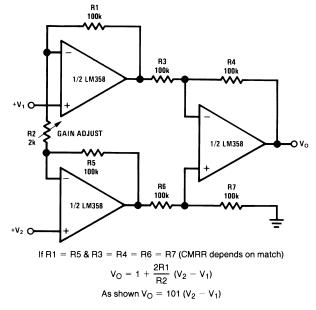


Figure 43. High Input Z Adjustable-Gain DC Instrumentation Amplifier

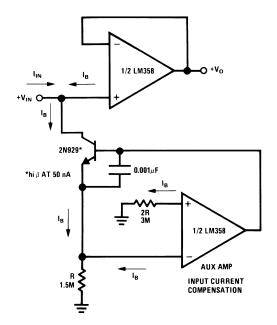
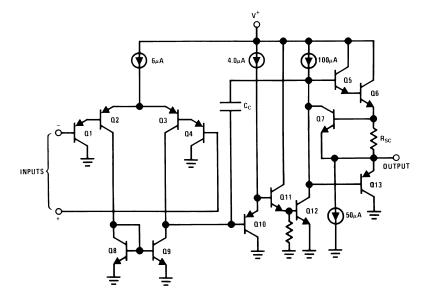



Figure 44. Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

SCHEMATIC DIAGRAM

(Each Amplifier)

SNOSBT3H - JANUARY 2000-REVISED MARCH 2013

REVISION HISTORY

Cł	hanges from Revision G (March 2013) to Revision H	Pa	ıge
•	Changed layout of National Data Sheet to TI format		2

27-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LM158AH	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	-55 to 125	LM158AH	Samples
LM158AH/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM158AH	Samples
LM158H	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	-55 to 125	LM158H	Samples
LM158H/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	POST-PLATE	Level-1-NA-UNLIM	-55 to 125	LM158H	Samples
LM158J	ACTIVE	CDIP	NAB	8	40	TBD	Call TI	Call TI	-55 to 125	LM158J	Samples
LM258H	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	-25 to 85	LM258H	Samples
LM258H/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	POST-PLATE	Level-1-NA-UNLIM	-25 to 85	LM258H	Samples
LM2904ITP/NOPB	ACTIVE	DSBGA	YPB	8	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	A 09	Samples
LM2904ITPX/NOPB	ACTIVE	DSBGA	YPB	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	A 09	Samples
LM2904M	ACTIVE	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 85	LM 2904M	Samples
LM2904M/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LM 2904M	Samples
LM2904MX	ACTIVE	SOIC	D	8	2500	TBD	Call TI	Call TI	-40 to 85	LM 2904M	Samples
LM2904MX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LM 2904M	Samples
LM2904N	ACTIVE	PDIP	Р	8	40	TBD	Call TI	Call TI	-40 to 85	LM 2904N	Samples
LM2904N/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	-40 to 85	LM 2904N	Samples
LM358AM	ACTIVE	SOIC	D	8	95	TBD	Call TI	Call TI	0 to 70	LM 358AM	Samples
LM358AM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM 358AM	Samples
LM358AMX	ACTIVE	SOIC	D	8	2500	TBD	Call TI	Call TI	0 to 70	LM 358AM	Samples

27-Mar-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
LM358AMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM 358AM	Samples
LM358AN	ACTIVE	PDIP	Р	8	40	TBD	Call TI	Call TI	0 to 70	LM 358AN	Samples
LM358AN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	SN	Level-1-NA-UNLIM	0 to 70	LM 358AN	Samples
LM358H	ACTIVE	TO-99	LMC	8	500	TBD	Call TI	Call TI	0 to 70	LM358H	Samples
LM358H/NOPB	ACTIVE	TO-99	LMC	8	500	Green (RoHS & no Sb/Br)	POST-PLATE	Level-1-NA-UNLIM	0 to 70	LM358H	Samples
LM358M	ACTIVE	SOIC	D	8	95	TBD	Call TI	Call TI	0 to 70	LM 358M	Samples
LM358M/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM 358M	Samples
LM358MX	ACTIVE	SOIC	D	8	2500	TBD	Call TI	Call TI	0 to 70	LM 358M	Samples
LM358MX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM 358M	Samples
LM358N	ACTIVE	PDIP	Р	8	40	TBD	Call TI	Call TI	0 to 70	LM 358N	Samples
LM358N/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	0 to 70	LM 358N	Samples
LM358TP/NOPB	ACTIVE	DSBGA	YPB	8	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	0 to 70	A 07	Samples
LM358TPX/NOPB	ACTIVE	DSBGA	YPB	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	0 to 70	A 07	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

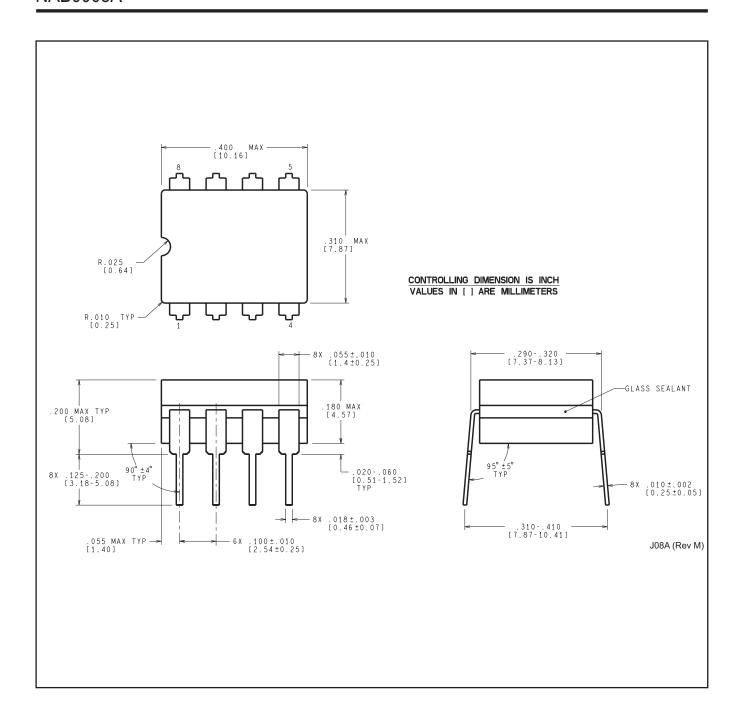
TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

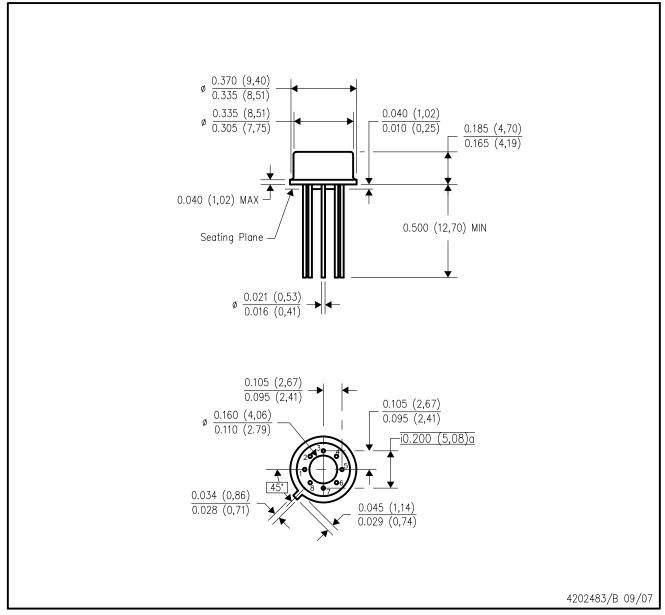
27-Mar-2013

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

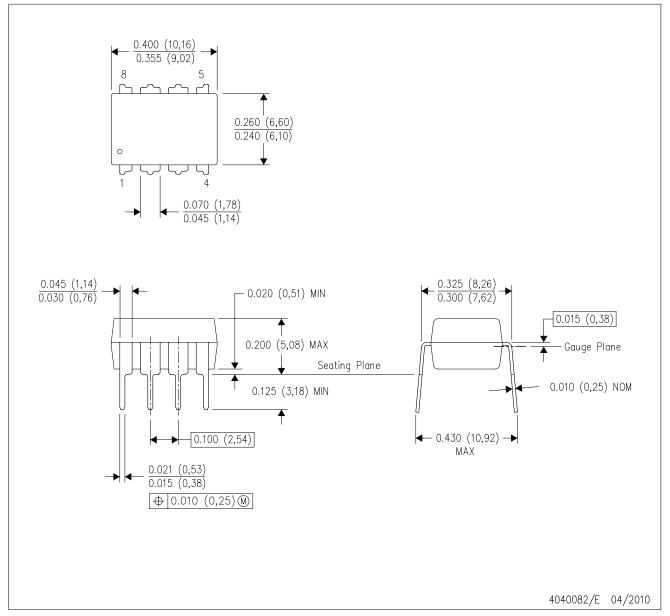
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

LMC (O-MBCY-W8)

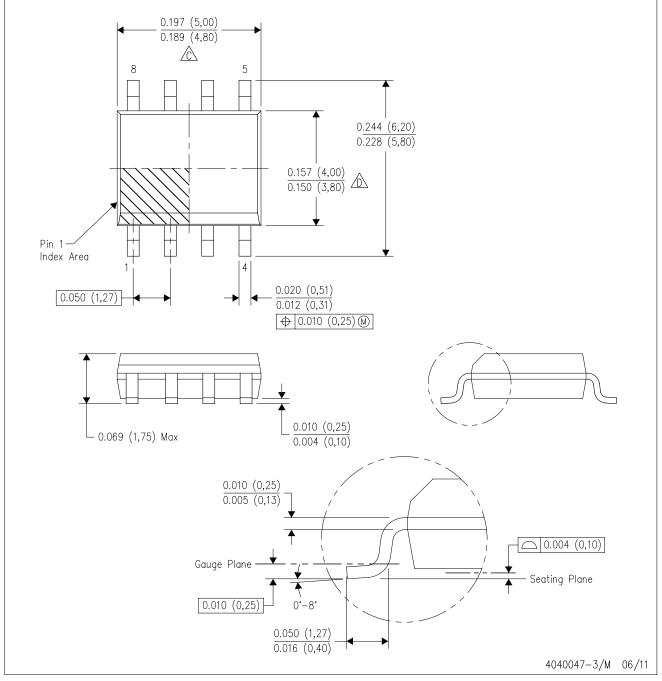
METAL CYLINDRICAL PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Leads in true position within 0.010 (0,25) R @ MMC at seating plane.
- D. Pin numbers shown for reference only. Numbers may not be marked on package.
- E. Falls within JEDEC MO-002/TO-99.

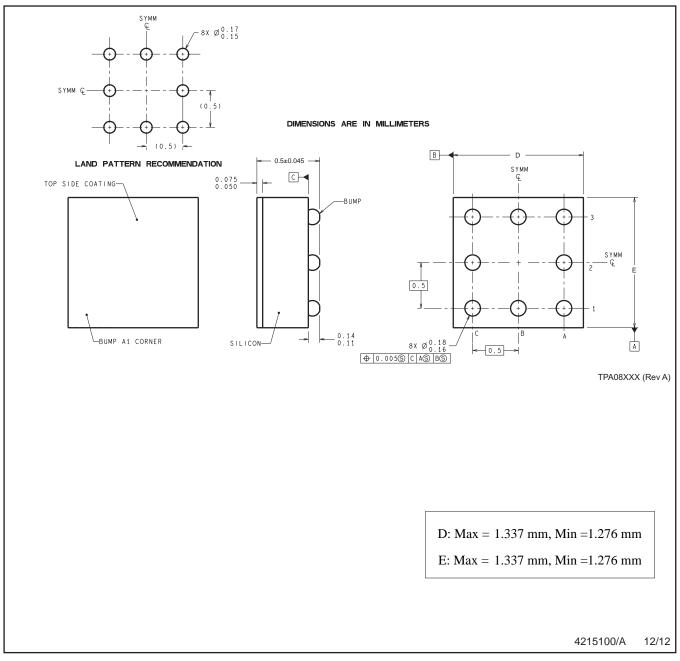
P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>