General-purpose Basic Switch

Best-selling Basic Switch Boasting High Precision and Wide Variety

\square A large switching capacity of 15 A with high repeat accuracy.
\square A wide range of variations in contact form for your selection: basic, split-contact, maintained-contact, and adjustable contact gap types.
■ A series of standard models for micro loads is available.

- A series of molded terminal-type models incorporating safety terminal protective cover is available.

Be sure to read Safety Precautions on page 22 and Safety Precautions for All Basic Switches.

Model Number Structure

Configuration

Basic Models

General-purpose

- A variety of actuators is available for a wide range of application.
- The contact mechanism of models for micro loads is a crossbar type with gold-alloy contacts, which ensures highly reliable operations for micro loads.
- Contact Gap:
$\mathrm{H} 2: 0.20 \mathrm{~mm}$ (extra-high-sensitivity)
H : 0.25 mm (high-sensitivity, micro voltage current load)
G : 0.5 mm (standard)
$\mathrm{E}: 1.8 \mathrm{~mm}$ (high-capacity)
F : 1.0 mm (split-contact models)

Drip-proof

- These Switches use a rubber boot on the actuator and adhesive fill between the case and cover to increase resistance to drips.
- Models with drip-proof terminal protective covers and molded terminals with resin filling are also available.

Split-contact Models

- This type is identical in construction to the general-purpose basic switch except that it has two pairs of simultaneous acting contacts by splitting moving contacts.
- Since the moving contacts are connected to a common terminal, either parallel or series connection is possible.
- Highly reliable micro load switching is ensured if the model is used as a twin-contact switch.

Maintained-contact Models

- The maintained-contact type has a reset button at the bottom of the switch case, in addition to the pushbutton (plunger) located on the opposite side of the reset button. Use these buttons alternately.
- Since the Switch has greater pretravel than overtravel, it is suitable for use in reversible control circuits, manual reset circuits, safety limit circuits, and other circuits which are not preferable for automatic resetting. (For further details, refer to individual datasheets.)

Model Number Legend

Basic Models
Z- $\square \square \square \square-\square$
(1) Ratings
$01: 0.1 \mathrm{~A}$ (micro load)
$15: 15 \mathrm{~A}$
(2) Contact Gap

H2 : 0.20 (extra-high-sensitivity)
H $\quad: 0.25 \mathrm{~mm}$ (high-sensitivity, micro load)
G $\quad: \quad 0.5 \mathrm{~mm}$ (standard)
E $\quad: 1.8 \mathrm{~mm}$ (high-capacity)

(3) Actuator

None : Pin plunger
S : Slim spring plunger
D : Short spring plunger
K : Spring plunger (medium OP)
K3 : Spring plunger (high OP)
Q3 : Panel mount plunger (medium OP)
Q : Panel mount plunger (medium OP)
Q8 : Panel mount plunger (high OP)
Q22 : Panel mount roller plunger
Q21 : Panel mount cross roller plunger
L : Leaf spring (high OF)
L2 : Roller leaf spring
W21 : Short hinge lever
W : Hinge lever (low OF)
W3 : Hinge lever (medium OF)
W32 : Hinge lever (high OF)
W4 : Low-force hinge lever
W44 : Long hinge lever
W78 : Low-force wire hinge lever (low OF)
W52 : Low-force wire hinge lever (high OF)
W22 : Short hinge roller lever
W2 : Hinge roller lever
W25 : Hinge roller lever (large roller)
W49 : Short hinge cross roller lever
W54 : Hinge cross roller lever
W2277 : Unidirectional short hinge roller lever (low OF)
M : Reverse hinge lever
M22 : Reverse short hinge roller lever
M2 : Reverse hinge roller lever
NJ : Flexible rod (high OF)
NJS : Flexible rod (low OF)
(4) Degree of Protection

None : General-purpose
55 : Drip-proof (not include the terminals)
A55 : Drip-proof (including the terminals)
(5) Terminals

None : Solder terminal
B : Screw terminal (with toothed washer)
B5V : Screw terminal with terminal cover (for Z-15G \square A55 only)

Note: For combinations of models, Ordering Information on page 3 to 6 .

Standard Models (Drip-proof Type/Molded Terminals)

$\frac{\mathbf{Z}-\square 55-\mathrm{M}}{\text { (1) }} \underset{\text { (2) }}{\square} \square \square \mathbf{M}$
(1) Drip-proof Type
(2) Lead Outlets

None : VSF
19 : VCT
(3) Directions of Lead

D : Descending
(4) Length of Lead

Outlets

$1: 1 \mathrm{~m}$
$3: 3 \mathrm{~m}$

Split-contact Models

Z-10F $\square \mathrm{Y}$-B
(1) (2)(3)(4) (5)
(1) Ratings

10 : 10 A (split-contact models)
(2) Contact Gap

F : 1 mm (high-capacity)
(3) Actuator

None : Pin plunger
S : Slim spring plunger
D : Short spring plunger
Q : Panel mount plunger
Q22 : Panel mount roller plunger
W : Hinge lever
W22 : Short hinge roller lever
W2 : Hinge roller lever
M22 : Reverse short hinge roller lever
(4) Construction

Y : Split-contact models
(5) Terminals

B : Screw terminal (with toothed washer)

Maintained-contact Models
Z-15-E $\square R$
(1) (2)(3)(4)
(1) Ratings
$15: 15 \mathrm{~A}$
(2) Contact Gap

E $\quad: 1.8 \mathrm{~mm}$ (high capacity)
(3) Actuator

None	: Pin plunger
S	: Slim spring plunger
W	: Hinge lever

(4) Structure

R : Maintained-contact models

Ordering Information

Main Unit

Basic Models（General－purpose）

Actuator	Classification Contact gap Terminal＊1		Standard	High－sensitivity	Extra－high sensitivity	High－capacity	Micro load
			G（0．5 mm）	H（0．25 mm）	H2（ 0.20 mm ）	E（1．8 mm）	H（0．25 mm）
			Model	Model	Model	Model	Model
Pin plunger	？	！	Z－15G	Z－15H	Z－15H2	Z－15E	Z－01H
		写	Z－15G－B	Z－15H－B	Z－15H2－B	Z－15E－B	Z－01H－B
Slim spring plunger		！	Z－15GS	Z－15HS	－－－	－－－	Z－01HS
		写	Z－15GS－B	Z－15HS－B			Z－01HS－B
Short spring plunger		d	Z－15GD	Z－15HD	－－－	Z－15ED	Z－01HD
		写	Z－15GD－B	Z－15HD－B		Z－15ED－B	Z－01HD－B
Panel mount plunger	$\begin{aligned} & \text { Low } \\ & \text { OP } \end{aligned}$	！	Z－15GQ3	－－－	－－－	－－－	－－－
		骂	Z－15GQ3－B			－－－	－－－
	Medium OP	！	Z－15GQ	Z－15HQ		Z－15EQ	Z－01HQ
		写	Z－15GQ－B	Z－15HQ－B		Z－15EQ－B	Z－01HQ－B
	High OP	d	Z－15GQ8	－－－		－－－	－－－
		写	Z－15GQ8－B			－－－	－－－
Panel mount roller plunger		d	Z－15GQ22	Z－15HQ22	－－－	Z－15EQ22	－－－
		宇	Z－15GQ22－B	Z－15HQ22－B		Z－15EQ22－B	
Panel mount cross roller plunger		！	Z－15GQ21	Z－15HQ21	－－	Z－15EQ21	－－－
		県	Z－15GQ21－B	Z－15HQ21－B		Z－15EQ21－B	
Leaf spring		！	Z－15GL	－－－	－－－	－－－	－－－
		鹄	Z－15GL－B				
Roller leaf spring		d	Z－15GL2	－－－	－－－	－－－	－－－
		宮	Z－15GL2－B				
Short hinge lever	n_	！	Z－15GW21	－－－	－－－	－－－	－－－
		写	Z－15GW21－B				
Hinge lever	$\begin{aligned} & \text { Low } \\ & \text { OP } \end{aligned}$	！	Z－15GW	Z－15HW	－－－	－－－	－－－
		写	Z－15GW－B	Z－15HW－B			
	Medium OP	d	Z－15GW3	－－－			
		写	Z－15GW3－B				
	High OP	d	Z－15GW32				
		写	Z－15GW32－B				
Low－force hinge lever		d	Z－15GW4	Z－15HW24	－－－	－－－	－－－
		写	Z－15GW4－B	Z－15HW24－B			
Low－ force wire hinge lever	Low OP	！	－－－	Z－15HW78	－－－	－－－	－－－
		鸲		Z－15HW78－B			
	High OP	¢		Z－15HW52			
		写		Z－15HW52－B			
Short hinge roller lever	Q	d	Z－15GW22	Z－15HW22	－－－	Z－15EW22	Z－01HW22
		写	Z－15GW22－B	Z－15HW22－B		Z－15EW22－B	Z－01HW22－B
Short hinge cross roller lever	Nilin	d	Z－15GW49	－－－	－－	－－－	－－－
		写	Z－15GW49－B				
Hinge roller lever	Stan－ dard	d	Z－15GW2	Z－15HW2	－－－	－－－	－－－
		鹄	Z－15GW2－B	Z－15HW2－B			
	Large roller	d	Z－15GW25	－－－		－－－	－－－
		鸲	Z－15GW25－B				
Hinge cross roller lever		b	Z－15GW54	－－－	－－－	－－－	－－－
		鸲	Z－15GW54－B				
Unidirectional short hinge roller lever	Parallel	b	Z－15GW2277	－－－	－－－	－－－	－－－
		写	Z－15GW2277－B				
Reverse hinge lever＊2	－	d	Z－15GM	－－－	－－－	－－－	－－－
		骂	Z－15GM－B				
Reverse short hinge roller lever＊2		！	Z－15GM22	－－－	－－－	－－－	－－－
		寫	Z－15GM22－B				
Reverse hinge roller lever＊2	8	d	Z－15GM2	－－－	－－－	－－－	－－－
		写	Z－15GM2－B				

[^0]＊2．The pin plungers of reverse－type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers．Reverse－type models are highly vibration－and shock－resistive because the pin plungers are normally pressed．

Minimum Order Lot

The following models are available at the minimum order lot specified below．
Orders must be placed per lot．

Actuator Classification	Standard	High－sensitivity	Minimum order lot（pcs）
Short spring plunger	Z－15GD－B	－	
Panel mount plunger	$\begin{gathered} \text { Z-15GQ } \\ \text { Z-15GQ-B } \\ \text { Z-15GQ8-B } \end{gathered}$	－	
Panel mount roller plunger	$\begin{gathered} \text { Z-15GQ22 } \\ \text { Z-15GQ22-B } \end{gathered}$	－	
Panel mount cross roller plunger	Z－15GQ21－B	－	
Short hinge lever	Z－15GW21－B	－	
Hinge lever	$\begin{gathered} \text { Z-15GW } \\ \text { Z-15GW-B } \end{gathered}$	－	10
Low－force hinge lever	Z－15GW4－B	Z－15HW24－B	
Low－force hinge wire lever	－	Z－15HW78－B	
Short hinge roller lever	$\begin{gathered} \text { Z-15GW22 } \\ \text { Z-15GW22-B } \end{gathered}$	－	
Hinge roller lever	$\begin{gathered} \text { Z-15GW2 } \\ \text { Z-15GW2-B } \end{gathered}$	－	
Reverse short hinge roller lever	Z－15GM22－B	－	
Reverse hinge roller lever	Z－15GM2－B	－	

Split－contact Models

Actuator	Contact gap Terminal＊1		F（1．0 mm）
			Model
Pin plunger	ก	d	－－－
		䔅	Z－10FY－B
Slim spring plunger	A	¢	－－－
		鸾	Z－10FSY－B
Short spring plunger	Ω	\downarrow	－－－
		号	Z－10FDY－B
Panel mount plunger	صـ	d	－－－
		号	Z－10FQY－B
Panel mount roller plunger	몸	d	－－－
		脗	Z－10FQ22Y－B
Hinge lever	L	d	－－－
		号	Z－10FWY－B
Short hinge roller lever	名	d	－－－
		脗	Z－10FW22Y－B
Hinge roller lever		！	－－－
		䂞	Z－10FW2Y－B
Reverse short hinge roller lever＊2		\downarrow	－－－
		俁	Z－10FM22Y－B

＊1．道：Solder terminal 写：Screw terminal
＊2．The pin plungers of reverse－type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers．Reverse－type models are highly vibration－and shock－resistive because the pin plungers are normally pressed．

Maintained－contact Models

Actuator		Model
Pin plunger		Z－15ER
Slim spring plunger	Z－15ESR	
Hinge lever		Z－15EWR

Basic Models（Drip－proof Models Standard，Microload

Actuator	Classification Contact gap Drip－proof terminal protective cover Terminal＊1		Standard		Micro load
			G（0．5 mm）		H（0．25 mm）
			Not provided	Provided	Not provided
			Model	Model	Model
Pin plunger	ก	！	Z－15G55	－－－	Z－01H55
		写	Z－15G55－B	Z－15GA55－B5V	Z－01H55－B
Short spring plunger	R	！	Z－15GD55	－－－	Z－01HD55
		写	Z－15GD55－B		Z－01HD55－B
Spring plunger	$\begin{aligned} & \text { Low } \\ & \text { OP } \end{aligned}$	¢	Z－15GK55	－－－	－－－
		写	Z－15GK55－B		
	High OP	b	Z－15GK355	－－－	－－－
		写	Z－15GK355－B	Z－15GK3A55－B5V	
Panel mount plunger		！	Z－15GQ55	－－－	－－－
		写	Z－15GQ55－B	Z－15GQA55－B5V	
Panel mount roller plunger	18	！	Z－15GQ2255	－－－	－－－
		写	Z－15GQ2255－B	Z－15GQ22A55－B5V	
Panel mount cross roller plunger	!	！	－－－	－－－	－－－
		写	Z－15GQ2155－B	Z－15GQ21A55－B5V	
Leaf spring	1	\downarrow	Z－15GL55	－－－	－－－
		写	Z－15GL55－B		
Roller leaf spring		b	Z－15GL255	－－－	－－－
		骂	Z－15GL255－B		
Short hinge lever	\sqrt{e}	！	Z－15GW2155	－－－	－－－
		写	Z－15GW2155－B		
Long hinge lever		6	Z－15GW4455	－－－	－－－
		写	Z－15GW4455－B	Z－15GW44A55－B5V	
Hinge lever	$\frac{1}{2}$	\downarrow	Z－15GW55	－－－	－－－
		写	Z－15GW55－B	Z－15GWA55－B5V	
Short hinge roller lever	Q	\downarrow	Z－15GW2255	－－－	Z－01HW2255
		写	Z－15GW2255－B	Z－15GW22A55－B5V	Z－01HW2255－B
Hinge roller lever	Q	d	Z－15GW255	－－－	－－－
		写	Z－15GW255－B	Z－15GW2A55－B5V	
Unidirectional short hinge roller lever	$\rightarrow 8$	1.	Z－15GW227755	－－－	－－－
		写	Z－15GW227755－B	Z－15GW2277A55－B5V	
Reverse hinge lever＊2	E	¢	Z－15GM55	－－－	－－－
		写	Z－15GM55－B		
Reverse short hinge roller lever＊2	\xrightarrow{Q}	1.	Z－15GM2255	－－－	－－－
		写	Z－15GM2255－B		
Reverse hinge roller lever＊2		¢	Z－15GM255	－－	－－－
		写	Z－15GM255－B		
Flexible rod（coil spring）＊3		1.	Z－15GNJ55	－－－	－－－
		㝍	Z－15GNJ55－B		

＊1．나 ：Solder terminal 愛：Screw terminal
＊2．The pin plungers of reverse－type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers．
＊3．The tip is made of resin

Minimum Order Lot

The following models are available at the minimum order lot specified below．
Orders must be placed per lot．

Classification	Standard	Minimum order lot（pcs）
Actuator Contact gap	G（ 0.5 mm ）	
Short spring plunger	Z－15GD55－B	10
Spring plunger	Z－15GK55－B	
Hinge lever	Z－15GW4455－B	
	Z－15GW55	
	Z－15GW55－B	
Short hinge roller lever	Z－15GW2255	10
	Z－15GW2255－B	
Hinge roller lever	Z－15GW255－B	
Flexible rod（coil spring）	Z－15GNJ55－B	

Basic Models (Drip-proof Models High-sensitivity)

| | Classification |
| :--- | ---: | :---: | :---: |
| Contact gap | |\quad High-sensitivity

Minimum Order Lot

The following models are available at the minimum order lot specified below.
Orders must be placed per lot

Actuator	Classification Contact gap	High-sensitivity	Minimum order
lot (pcs)			
Flexible rod (steel wire)	Z-15HNJS55-B	10	

: Solder terminal 㐓: Screw terminal

Specifications

Ratings (Basic, Split-contact and Maintained contact Models)

Z-15 (Except Micro Load and Flexible Rod Models)

Contact gap	Item Rated voltage	Non-inductive load (A)			Inductive load (A)		
		Resistive load	Lamp load		Inductive load	Motor load	
		NC NO	NC	NO	NC NO	NC	NO
$\begin{aligned} & \mathrm{G}, \mathrm{H}, \\ & \mathrm{H} 2, \mathrm{E} \end{aligned}$	125 VAC	$\begin{aligned} & 15(10)^{*} \\ & 15(10) \text { * } \end{aligned}$	3	1.5	15 (10) *	5	2.5
	250 VAC		2.5	1.25	15 (10) *	3	1.5
	500 VAC*	10	1.5	0.75	6	1.5	0.75
G	8 VDC	15	3	1.5	15	5	2.5
	14 VDC	15	3	1.5	10	5	2.5
	30 VDC	6	3	1.5	5	5	2.5
	125 VDC	0.5	0.5	0.5	0.05	0.05	0.05
	250 VDC	0.25	0.25	0.25	0.03	0.03	0.03
H, H2	8 VDC	15	3	1.5	15	5	2.5
	14 VDC	15	3	1.5	10	5	2.5
	30 VDC	2	2	1.4	1	1	1
	125 VDC	0.4	0.4	0.4	0.03	0.03	0.03
	250 VDC	0.2	0.2	0.2	0.02	0.02	0.02
E	8 VDC	15	3	1.5	15	5	2.5
	14 VDC	15	3	1.5	15	5	2.5
	30 VDC	15	3	1.5	10	5	2.5
	125 VDC	0.75	0.75	0.75	0.4	0.4	0.4
	250 VDC	0.3	0.3	0.3	0.2	0.2	0.2

* Figures in parentheses are for the Z-15HW52, Z-15HW78(-B) and Z-15H2(-B) models, the AC ratings of these models are 125 and 250 V only.

Z-15 (Flexible Rod Models)

Rated voltage	Non-inductive load (A)				Inductive load (A)			
	Resistive load		Lamp load		Inductive load		Motor load	
	NC	NO	NC	NO	NC	NO	NC	NO
125 VAC	15		2	1			2.5	2
250 VAC	15		1	0.5			1.5	1
8 VDC	15		2	1			3	1.5
14 VDC	15		2	1			3	1.5
30 VDC	2		2	1			1	0.5
125 VDC	0.4		0.4	0.4			0.03	0.03
250 VDC	0.2		0.2	0.2			0.02	0.02

Z-10F

Contact gap	Item Rated voltage	Non-inductive load (A)				Inductive load (A)		
		Resistive load		Lamp load		Inductive load	Motor load	
		NC	NO	NC	NO	NC NO	NC	NO
	$\begin{aligned} & 125 \text { VAC } \\ & 250 \text { VAC } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{gathered} \hline 4 \\ 2.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.5 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$
connection	30 VDC 125 VDC 250 VDC	$\begin{gathered} 10 \\ 1 \\ 0.6 \end{gathered}$		$\begin{gathered} 4 \\ 1 \\ 0.6 \end{gathered}$	$\begin{gathered} 2 \\ 1 \\ 0.6 \end{gathered}$	$\begin{gathered} 6 \\ 0.1 \\ 0.05 \end{gathered}$	$\begin{gathered} 6 \\ 0.1 \\ 0.05 \end{gathered}$	$\begin{gathered} 3 \\ 0.1 \\ 0.05 \end{gathered}$
Parallel connection	$\begin{aligned} & 125 \text { VAC } \\ & 250 \text { VAC } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$		$\begin{gathered} 3 \\ 2.5 \end{gathered}$	$\begin{gathered} 1.5 \\ 1.25 \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	2
	$\begin{aligned} & 30 \text { VDC } \\ & 125 \text { VDC } \\ & 250 \text { VDC } \end{aligned}$	$\begin{gathered} 6 \\ 0.6 \\ 0.3 \end{gathered}$		$\begin{gathered} 4 \\ 0.6 \\ 0.3 \end{gathered}$	$\begin{gathered} 2 \\ 0.6 \\ 0.3 \end{gathered}$	$\begin{gathered} 4 \\ 0.1 \\ 0.05 \end{gathered}$	$\begin{gathered} 6 \\ 0.1 \\ 0.05 \end{gathered}$	$\begin{gathered} 3 \\ 0.1 \\ 0.05 \end{gathered}$

Z-01H

Rated voltage	Resistive load (A)	
	NC	NO
125 VAC	0.1	
8 VDC	0.1	
14 VDC	0.1	
30 VDC	0.1	

Note: 1. The above current ratings are the values of the steady-state current.
2. Inductive load has a power factor of 0.4 min . AC) and a time constant of 7 ms max. (DC).
3. Lamp load has an inrush current of 10 times the steady-state current.
4. Motor load has an inrush current of 6 times the steady-state current.
5. The normally closed and normally open ratings of reverse hinge lever models are opposite to each other.
6. The AC ratings of molded terminals are 125 and 250 V only.
7. The ratings values apply under the following test conditions:
(1) Ambient temperature: $20 \pm 2^{\circ} \mathrm{C}$
(2) Ambient humidity: $65 \pm 5 \% \mathrm{RH}$
(3) Operating frequency: 20 operations/min

Use the switch within the operating range.

	Z-01H	Z-15 \square, Z-10FY
Minimum applicable load	5 VDC 1 mA	5 VDC 160 mA

Certified Standard Ratings

Ask your OMRON representative for information on certified models.
UL/CSA (General ratings only)

Rated voltage Model	Z-15	Z-10F	Z-01H
125 VAC	$15 \mathrm{~A} 1 / 8 \mathrm{HP}$	$6 \mathrm{~A} 1 / 10 \mathrm{HP}$	0.1 A
250 VAC	$15 \mathrm{~A} 1 / 4 \mathrm{HP}$	$6 \mathrm{~A} 1 / 8 \mathrm{HP}$	---
480 VAC	15 A	6 A	---
30 VDC	--	--	0.1 A
125 VDC	0.5 A	0.6 A	--
250 VDC	0.25 A	0.3 A	---

TÜV (EN61058-1)

Rated voltage Model	Z-15H $\square-\mathbf{B}$	Z-15G \square-B	Z-01H $\square-B$
250 VAC	15 A	15 A	--
125 VAC	---	--	0.1 A
30 VDC	---	0.1 A	

Characteristics

Item	Classification	Z-15 (except micro load and flexible rod)	Z-01H	Z-15 (flexible rod)	Z-10F	Z-15H2
Operating speed		0.01 mm to $1 \mathrm{~m} / \mathrm{s} * 1$		1 mm to $1 \mathrm{~m} / \mathrm{s}$	0.1 mm to $1 \mathrm{~m} / \mathrm{s}^{*} 1$	0.01 mm to $1 \mathrm{~m} / \mathrm{s}$
Operating frequency	Mechanical	240 operations/min		120 operations/min	240 operations/min	240 operations/min
	Electrical	20 operations/min				
Insulation resistance		$100 \mathrm{M} \Omega$ min. (at 500 VDC)				
Contact resistance		$15 \mathrm{~m} \Omega \mathrm{max}$. (initial value) $50 \mathrm{~m} \Omega \mathrm{max}$. (initial value) Between contacts of same polarity Contact gap G: 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min Contact gap H: 600 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min Contact gap E: 1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min		$15 \mathrm{~m} \Omega$ max. (initial value)	$25 \mathrm{~m} \Omega$ max. (initial value)	$15 \mathrm{~m} \Omega$ max. (initial value)
Dielectric strength				Between contacts of same polarity Contact gap G: 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min Contact gap H: 600 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	Between contacts of same polarity Contact gap F: 1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min	Between contacts of same polarity 600VAC, $50 / 60 \mathrm{~Hz}$ for 1 min
		Between current-carrying metal parts and ground, and between each terminal and non-current-carrying metal parts $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min				
Vibration resistance	Malfunction	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude *5		10 to $20 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude *5	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude *5	
Shock resistance	Destruction	1,000 m/s ${ }^{2} \mathrm{max}$.				
	Malfunction	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} .{ }^{*}{ }^{*} 5$		$50 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} .{ }^{*} 5$	$300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max} .{ }^{*} 3$ *5	$100 \mathrm{~m} / \mathrm{s}^{2}$ max.
Durability	Mechanical	Contact gap G, H: 20,000,000 operations min. Contact gap E: 300,000 operations		1,000,000 operations min.	500,000 operations min. *1	20,000,000 operations min.
	Electrical	Contact gap G, H: 500,000 operations min. Contact gap E: 100,000 operations min.		100,000 operations min.	100,000 operations min.	500,000 operations min.
Degree of protection	General-purpose	IP00				
	Drip-proof	Equivalent to IP62 (except terminals)				
Degree of protection against electric shock		Class I				
Proof tracking index (PTI)		175				
Ambient operating temperature	General-purpose	$-25^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing)				
	Drip-proof	$-15^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing)				
Ambient operating humidity	General-purpose	35\% to 85\%RH				
	Drip-proof	35\% to 95\%RH				
Weight		Approx. 22 to 58 g		Approx. 42 to 48 g	Approx. 34 to 61 g	Approx. 22 g

*1. The values are for the plunger models. (For the lever models, the values are at the plunger section.) (Consult your OMRON representative for other models.)
*2. The values are for the Z -15G pin plunger.
*3. The values are for the Z-10FY-B.
*4. The values are for the pin plunger. The durability for models other than the pin plunger is $10,000,000 \mathrm{~min}$.
*5. Malfunction: 1 ms max.

Contacts Specification

Classification	Z-15	Z-01H	Z-10F	
Contacts	Shape	Rivet	Single crossbar	Rivet
	Material	Silver	Gold alloy	Silver
Inrush current	NC	30 A max.	0.1 A max.	40 A max.
	NO	$15 \mathrm{~A} \mathrm{max}$.	0.1 A max.	$20 \mathrm{~A} \mathrm{max}$.

Engineering Data

Mechanical Durability (Z-15G)

Electrical Durability (Z-15G)

Basic Models

Contact Form (SPDT)

Note: The Z-15GM is a reversible model and the NO and NC positions are reversed.

Molded Terminals

Note: The Z-15GM is a reversible model and the NO and NC positions are reversed.

Structure

Drip-proof Construction

- Without Terminal Protective Cover

- With Terminal Protective Cover

Rubber boot (weather-resistive
chloroprene is used)

Rubber packing (improves sealing between switch housing and terminal cover)

Terminal protective covers are sold separately for maintenance purposes, which can be, however, used with the Z- \square-B5V models only. For details, refer to page 24.

Split-contact Models

Contact Form

Note: The NO and NC terminal arrangement is reversed for Models with reverse operation (Z-10FM)

Connection Example

Series Connection

Parallel Connection

Maintained-contact Models

Contact Form

Mounting

Use M4 screws with plane washers and spring washers to mount the Switch. Tighten each mounting screw securely to a torque of 1.18 to 1.47 N•m.

When mounting the Switch to a panel, use a tightening torque of 2.94 to $4.9 \mathrm{~N} \cdot \mathrm{~m}$ for the hexagonal nuts on the actuator.

Panel Mount Plunger

Panel Mount Roller Plunger

Basic Models General-purpose and Split-contact Models

Terminals

Dimensions and Operating Characteristics

The models, illustrations, and graphics are for screw-terminal models (-B). The "-A" at the end of the model number for solder terminal models has been omitted. For details of the terminals, see above.

Pin Plunger

Z-15G-B	Z-15E-B
Z-15H2-B	Z-01H-B
Z-15H-B	Z-10FY-B

Operating Characteristics	Model	Z-15G-B	Z-15H2-B	Z-15H-B	Z-15E-B	Z-01H-B	Z-10FY-B
Operating force	OF	2.45 to 3.43 N	1.96 to 2.5 N	1.96 to 2.75 N	6.12 to 7.85 N	2.45 N max.	4.46 to 7.26 N
Release force	RF min.	1.12 N	1.12 N	1.12 N	1.12 N	0.78 N	1.12 N
Pretravel	PT max.	0.4 mm	0.3 mm	0.3 mm	0.8 mm	0.5 mm	0.8 mm
Overtravel	OT min.	0.13 mm					
Movement Differential	MD max.	0.05 mm	0.005 to 0.008 mm	0.025 mm	0.13 mm	0.04 mm	0.1 mm
Operating Position OP				15.	mm		

	Z-15GS-B	Z-15HS-B	Z-01HS	Z-10FSY-B	
OF min.	2.45 to 3.43 N	1.96 to 2.79 N	2.45 N max.	4.46 to 7.26 N	
RF min.	1.12 N	1.12 N	0.78 N	1.12 N	
PT max.	0.4 mm	0.3 mm	0.5 mm	0.8 mm	
OT min.	1.6 mm	1.6 mm	1.6 mm	1.6 mm	
MD max.	0.05 mm	0.025 mm	0.05 mm	0.1 mm	
OP	$28.2 \pm 0.5 \mathrm{~mm}$				

Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Short Spring Plunger
 Z-15GD-B Z-01HD-B
 Z-15HD-B Z-10FDY-B
 Z-15ED-B

	Z-15GD-B	Z-15HD-B	Z-15ED-B	Z-01HD-B	Z-10FDY-B
OF	2.45 to 3.43 N	1.96 to 2.79 N	6.13 to 7.85 N	2.45 N max.	4.46 to 7.26 N
RF \min.	1.12 N	1.12 N	1.12 N	0.78 N	1.12 N
PT max.	0.4 mm	0.3 mm	0.8 mm	0.5 mm	0.8 mm
OT min.	1.6 mm				
MD max.	0.05 mm	0.025 mm	0.13 mm	0.05 mm	0.1 mm
OP	$21.5 \pm 0.5 \mathrm{~mm}$				

Panel Mount Plunger

```
Z-15GQ-B Z-01HQ-B
Z-15HQ-B Z-10FQY-B
Z-15EQ-B Z-15GQ3-B *
Z-15GQ8-B*
```


Note: 1. Do not use the M12 mounting screw and the case mounting hole at the same time, or excessive pulling force will be imposed on the switch and the case and cover may be damaged
2. On the model Z-15GQ3-B, PT can be set to a value larger than that for the Z 15GQ.
3. On the model Z-15GQ8-B, operating position can be adjusted by providing a screw in the plunger section.
4. On the model Z-15GQ8-B, the M3 hole with a depth of 10 mm is a through hole. Take precautions so that no water or screw lock agent penetrates into the hole.

	Z-15GQ-B	Z-15HQ-B	Z-15EQ-B	Z-01HQ-B	Z-10FQY-B	Z-15GQ3-B	Z-15GQ8-B
OF	2.45 to 3.43 N	1.96 to 2.79 N	6.13 to 7.85 N	2.45 N max.	4.46 to 7.26 N	2.45 to 3.43 N	2.45 to 3.43 N
RF min.	1.12 N	1.12 N	1.12 N	0.78 N	1.12 N	1.12 N	
PT max.	0.4 mm	0.3 mm	0.8 mm	0.5 mm	0.8 mm	4.2 mm	
OT min.	5.5 mm	2.5 mm	0.5 mm				
MD max.	0.05 mm	0.025 mm	0.13 mm	0.05 mm	0.1 mm	2.2 mm	0.05 mm
OP	$21.8 \pm 0.8 \mathrm{~mm}$						$18.8 \pm 0.8 \mathrm{~mm}$

Panel Mount Roller Plunger

Z-15GQ22-B Z-15EQ22-B
Z-15HQ22-B Z-10FQ22Y-B

*2. Two hexagonal nuts ($3 \mathrm{t} \times 17$ width across flats)
*3. Incomplete screw part with a maximum length of 1.5 mm

	Z-15GQ22-B	Z-15HQ22-B	Z-15EQ22-B	Z-10FQ22Y-B
OF	2.45 to 3.43 N	1.96 to 2.79 N	6.13 to 7.85 N	4.46 to 7.26 N
RF min.	1.12 N	1.12 N	1.12 N	1.12 N
PT max.	0.4 mm	0.3 mm	0.8 mm	1 mm
OT min.	3.58 mm	3.58 mm	3.58 mm	3.55 mm
MD max.	0.05 mm	0.025 mm	0.13 mm	0.1 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$			

[^1]
Panel Mount Cross Roller Plunger

Z-15GQ21-B Z-15EQ21-B
 Z-15HQ21-B

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

	Z-15GQ21-B	Z-15HQ21-B
OF	2.45 to 3.43 N	1.96 to 2.79 N
RF min.	1.12 N	1.12 N
PT max.	0.4 mm	0.3 mm
OT min.	3.58 mm	3.58 mm
MD max.	0.05 mm	0.025 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$	

	Z-15EQ21-B
OF	6.13 to 7.85 N
RF min.	1.12 N
PT max.	0.8 mm
OT min.	3.58 mm
MD max.	0.13 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Leaf Spring

Z-15GL-B

OF max.	1.38 N
RF min.	0.14 N
OT *min.	1.6 mm
MD max.	1.3 mm
FP max.	20.6 mm
OP	$17.4 \pm 0.8 \mathrm{~mm}$

* When operating, be sure not to exceed 1.6 mm .

Roller Leaf Spring

Z-15GL2-B

OF max.	1.38 N
RF min.	0.14 N
OT *min.	1.6 mm
MD max.	1.3 mm
FP max.	31.8 mm
OP	$28.6 \pm 0.8 \mathrm{~mm}$
* When	

* When operating, be sure not to exceed 1.6 mm .

Short Hinge Lever Z-15GW21-B

OF max.	1.57 N
RF min.	0.27 N
OT min.	2 mm
MD max.	1 mm
FP max.	24.8 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Hinge Lever

Z-15GW-B Z-15GW32-B
Z-15HW-B Z-10FWY-B
Z-15GW3-B (Lever Length: 56R)*

* The external dimensions of the actuator vary.

	Z-15GW-B	Z-15HW-B	Z-15GW32-B	Z-10FWY-B	Z-15GW3-B
OF	0.69 N max.	0.66 N max.	1.47 to 1.96 N	$0.88 \mathrm{~N} \max$.	0.78 N max.
RF \min.	0.14 N	0.14 N	0.92 N	0.14 N	0.15 N
OT min.	5.6 mm	5.6 mm	5.6 mm	5.6 mm	4.8 mm
MD max.	1.27 mm	0.63 mm	1.27 mm	2.4 mm	1.12 mm
FP max.	28.2 mm	27.4 mm	28.2 mm	29.8 mm	27.2 mm
OP	$19 \pm 0.8 \mathrm{~mm}$				

Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Low-force Hinge Lever

Z-15GW4-B

Z-15HW24-B

Low-force Wire Hinge Lever

Z-15HW52-B

Z-15HW78-B (Lever Length: 110R) *

* The external dimensions of the actuator vary

Note: AC electrical ratings: $10 \mathrm{~A}, 125 / 250 \mathrm{~V}$.

Short Hinge Roller Lever

Z-15GW22-B Z-01HW22-B
Z-15HW22-B Z-10FW22Y-B
Z-15EW22-B
Z-15GW2-B * Z-15HW2-B *
Z-10FW2Y-B *

dimensions of the actuator vary.
(Lever Length:
48.5R)

	Z-15GW22-B	Z-15HW22-B	Z-15EW22-B	Z-01HW22-B	Z-10FW22Y-B	Z-15GW2-B	Z-15HW2-B	Z-10FW2Y-B
OF max.	1.57 N	1.47 N	1.94 N	1.57 N	2.45 N	0.98 N	0.84 N	1.27 N
RF min.	0.41 N	0.41 N	0.41 N	0.27 N	0.34 N	0.22 N	0.22 N	0.22 N
OT min.	2.4 mm	4 mm	4 mm	4 mm				
MD max.	0.5 mm	0.45 mm	1.3 mm	0.5 mm	1 mm	1.02 mm	0.6 mm	2 mm
FP max. OP	$\begin{gathered} 32.5 \mathrm{~mm} \\ 30.2 \pm 0.4 \mathrm{~mm} \end{gathered}$		$\begin{gathered} 35.1 \mathrm{~mm} \\ 30.2 \pm 0.4 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 32.5 \mathrm{~mm} \\ 30.2 \pm 0.4 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 34.8 \mathrm{~mm} \\ 30.2 \pm 0.4 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 36.5 \mathrm{~mm} \\ 30.2 \pm 0.8 \mathrm{~mm} \end{gathered}$		$\begin{gathered} 37.4 \mathrm{~mm} \\ 30.2 \pm 0.8 \mathrm{~mm} \end{gathered}$

[^2]

OF max.	0.98 N
RF min.	0.21 N
OT min.	4 mm
MD max.	1.6 mm
FP max.	47.5 mm
OP	$41.2 \pm 0.8 \mathrm{~mm}$

Hinge Roller Lever

Z-15GW25-B

9.5 dia. $\times 4$
(plastic roller)
Unidirectional Short Hinge Roller Lever

OF max.	1.67 N
RF min.	0.41 N
OT min.	2.4 mm
MD max.	0.51 mm
FP max.	43.6 mm
OP	$41.3 \pm 0.8 \mathrm{~mm}$

Z-15GW2277-B

OF max.	1.67 N
RF min.	0.27 N
OT min.	5.6 mm
MD max.	0.89 mm
FP max.	23.8 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Reverse Short Hinge Roller Lever **

	Z-15GM22-B	Z-10FM22Y-B
OF max.	5.28 N	6.37 N
RF min.	1.67 N	1.67 N
OT min.	2 mm	2 mm
MD max.	0.28 mm	0.56 mm
FP max.	31.8 mm	33 mm
OP	$29.4 \pm 0.4 \mathrm{~mm}$	$29.4 \pm 0.4 \mathrm{~mm}$

Reverse Hinge Roller Lever ** Z-15GM2-B

Stainless-steel leve

[^3]
Basic Models (Drip-proof) without Terminal Protective Cover

Terminals (Molded Terminals : Refer to page 21.)

Without Terminal Protective Cover

Three, M4 $\times 5.5$ Terminal screws (with toot

Note: With reverse action models (Z-15GM), the positions of NO and NC terminals are reversed.

Dimensions and Operating Characteristics The above illustration is for model without terminal protective cover.

Pin Plunger
Z-15G55-B
Z-01H55-B

	Z-15G55-B	Z-01H55-B
OF	2.45 to 4.22 N	3.43 N max.
RF min.	1.12 N	0.78 N
PT max.	2.2 mm	2.2 mm
OT min.	0.13 mm	0.13 mm
MD max.	0.06 mm	0.06 mm
OP	$15.9 \pm 0.4 \mathrm{~mm}$	

Short Spring Plunger
Z-15GD55-B
Z-01HD55-B

	Z-15GD55-B	Z-01HD55-B
OF max.	5.30 N	3.63 N
RF min.	1.12 N	0.78 N
PT max.	1.8 mm	1.9 mm
OT min.	1.6 mm	1.6 mm
MD max.	0.06 mm	0.06 mm
OP	$21.5 \pm 0.5 \mathrm{~mm}$	

Spring Plunger Z-15GK55-B

OF max.	5.30 N
RF min.	1.12 N
PT max.	2.3 mm
OT min.	1.6 mm
MD max.	0.06 mm
OP	$28.2 \pm 0.5 \mathrm{~mm}$

Z-15GK355-B

OF max.	5.30 N
RF min.	1.12 N
PT max.	2.4 mm
OT min.	3.5 mm
MD max.	0.06 mm
OP	$37.8 \pm 1.2 \mathrm{~mm}$

[^4]
Panel Mount Plunger

Z-15GQ55-B

OF max.	5.30 N
RF min.	1.12 N
PT max.	1.8 mm
OT min.	5.5 mm
MD max.	0.06 mm
OP	$21.8 \pm 0.8 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at
the same time, or the case may be damaged.

Panel Mount Roller Plunger

Z-15GQ2255-B

OF max.	5.30 N
RF min.	1.12 N
PT max.	1.8 mm
OT min.	3.58 mm
MD max.	0.06 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Panel Mount Cross Roller Plunger

Z-15GQ2155-B

*1. Stainless-steel roller
*2. Two hexagonal nuts (3 $\mathrm{t} \times 17$ width across flats)
$* 3$. Incomplete screw part with a maximum length of 1.5 mm .

OF max.	5.30 N
RF min.	1.12 N
PT max.	1.8 mm
OT min.	3.58 mm
MD max.	0.06 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Leaf Spring

Z-15GL55-B

OF max.	1.96 N
RF min.	0.14 N
OT *min.	1.6 mm
MD max.	1.3 mm
FP max.	20.6 mm
OP	$17.5 \pm 0.8 \mathrm{~mm}$

* When operating, be sure not to exceed 1.6 mm .

[^5]
Roller Leaf Spring

Z-15GL255-B

OF max.	1.96 N
RF min.	0.14 N
OT *min.	1.6 mm
MD max.	1.3 mm
FP max.	31.8 mm
OP	$28.6 \pm 0.8 \mathrm{~mm}$
* When operating, be sure not to	
exceed 1.6 mm.	

Short Hinge Lever

Z-15GW2155-B

OF max.	1.86 N
RF min.	0.27 N
OT min.	2 mm
MD max.	1 mm
FP max.	25 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Long Hinge Lever

Z-15GW4455-B

OF max.	0.88 N
RF min.	0.14 N
OT min.	5.6 mm
MD max.	3.5 mm
FP max.	33 mm
OP	$19 \pm 1.2 \mathrm{~mm}$

Hinge Lever Z-15GW55-B

OF max.	0.98 N
RF min.	0.14 N
OT min.	5.6 mm
MD max.	2 mm
FP max.	28.2 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Short Hinge Roller Lever

Z-15GW2255-B
Z-01HW2255-B

9.5 dia. $\times 4$ (plastic rolle

	Z-15GW2255-B	Z-01HW2255-B
OF max.	1.96 N	1.96 N
RF min.	0.41 N	0.27 N
OT min.	2.4 mm	2.4 mm
MD max.	0.8 mm	0.8 mm
FP max.	32.9 mm	
OP	$30.2 \pm 0.4 \mathrm{~mm}$	

[^6]Hinge Roller Lever

Z-15GW255-B

OF max.	1.27 N
RF min.	0.21 N
OT min.	4 mm
MD max.	1.6 mm
FP max.	36.5 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

Unidirectional Short Hinge Roller Lever

Z-15GW227755-B

OF max.	1.77 N
RF min.	0.49 N
OT min.	2.4 mm
MD max.	0.8 mm
FP max.	43.6 mm
OP	$41.3 \pm 0.8 \mathrm{~mm}$

Reverse Hinge Lever *

Z-15GM55-B

OF max.	1.96 N
RF min.	0.27 N
OT min.	5.6 mm
MD max.	0.89 mm
FP max.	23.8 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

Reverse Short Hinge Roller Lever *

Z-15GM2255-B

OF max.	5.69 N
RF min.	1.67 N
OT min.	2 mm
MD max.	0.28 mm
FP max.	31.8 mm
OP	$29.4 \pm 0.4 \mathrm{~mm}$

Reverse Hinge Roller Lever *

Z-15GM255-B

OF max.	2.65 N
RF min.	0.55 N
OT min.	4 mm
MD max.	0.64 mm
FP max.	35 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

[^7]Flexible Rod (Coil Spring)

Z-15GNJ55-B

OF max.	0.49 N
PT max.	$(20 \mathrm{~mm})$
TT max.	40 mm

*1. Operation is possible in any direction other than the axial direction (indicated by the arrow
2. Use only the area within the top 30 mm of the rod as the operating part. (Do not use the area that falls within 80 mm from the mounting hole as the operating part. Using this area may cause damage to the nylon rod

Flexible Rod (Steel Wire)

Z-15HNJS55-B

*1. Operation is possible in any direction other than the axial direction (indicated by the arrow
*2. Use only the area within the top 30 mm of the rod as the
operating part. (Do not use the area thot the rod as the
mm from the mounting hole as the operating part
Using this area may cause damage to the steel wire.)
3. The steel wire can be replaced if damaged (Model: Lever for HNJS55)

Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions

Basic Models (Drip-proof) with Terminal Protective Cover
Dimensions and Operating Characteristics
Pin Plunger
Z-15GA55-B5V

OF max.	2.45 to 4.22 N
RF min.	1.12 N
PT max.	2.2 mm
OT min.	0.13 mm
MD max.	0.06 mm
OP	$15.9 \pm 0.4 \mathrm{~mm}$

Z-15GK3A55-B5V

OF max.	5.30 N
RF min.	1.12 N
PT max.	2.4 mm
OT min.	3.5 mm
MD max.	0.06 mm
OP	$37.8 \pm 1.2 \mathrm{~mm}$

* Stainless-steel plunger

Panel Mount Plunger

Z-15GQA55-B5V

OF max.	5.30 N
RF \min.	1.12 N
PT \max.	1.8 mm
OT \min.	5.5 mm
MD max.	0.06 mm
OP	$21.8 \pm 0.8 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.
${ }^{*}$ 1. Stainless-steel plunger
2. Two hexagonal nuts ($2 \mathrm{t} \times 14$ width across flat)

Panel Mount Roller Plunger Z-15GQ22A55-B5V

1. Stainless-steel roller
*1. Stainless-steel roller
*2. Two hexagonal nuts ($3 \mathrm{t} \times 17$ width across flats)

OF max.	5.30 N
RF min.	1.12 N
PT max.	1.8 mm
OT min.	3.58 mm
MD max.	0.06 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

Panel Mount Cross-roller Plunger Z-15GQ21A55-B5V

OF max.	5.30 N
RF min.	1.12 N
PT max.	1.8 mm
OT min.	3.58 mm
MD max.	0.06 mm
OP	$33.4 \pm 1.2 \mathrm{~mm}$

Note: Do not use the M12 mounting screw and the case mounting hole at the same time, or the case may be damaged.

[^8]Long Hinge Lever Z-15GW44A55-B5V

Hinge Lever
Z-15GWA55-B5V

OF max.	0.98 N
RF min.	0.14 N
OT min.	5.6 mm
MD max.	2 mm
FP max.	28.2 mm
OP	$19 \pm 0.8 \mathrm{~mm}$

* Stainless-steel lever

Short Hinge Roller Lever
Z-15GW22A55-B5V

Hinge Roller Lever
Z-15GW2A55-B5V

OF max.	1.27 N
RF min.	0.21 N
OT min.	4 mm
MD max.	1.6 mm
FP max.	36.5 mm
OP	$30.2 \pm 0.8 \mathrm{~mm}$

Stainless-steel lever

Unidirectional Short Hinge Roller Lever
Z-15GW2277A55-B5V

[^9]
Basic Models (Drop-proof) with Modeled terminals

Molded Terminals

L/R Type (The following illustration is the R type.)
 D Type

Size (mm) Lead wire	a	b	c
VSF	12	4	12
VCT	19	11	16

Lead Wire Specifications

Lead wire Specifications	Nominal cross sectional area (mm2)	Finished outer diameter (mm)	Connection to terminal	Length (m)
VSF (single-core, vinyl cord)	1.25	Approx. 3.1 dia.	Black : COM	1,3
VCT (vinyl-insulated cable)		Three-core: approx. 10.5 dia.	White : NO Red :NC	

Note: 1. No models with molded terminals are approved by UL, CSA, or EN.
2. Molded terminals are not available on all models. Contact your OMRON representative for applicable products.

Maintained-contact Models

Dimensions and Operating Characteristics

Pin Plunger

Plunger

OF max.	1.96 to 2.50 N
PT max.	0.4 mm
OT \min.	0.13 mm
OP	$15.9 \pm 0.4 \mathrm{~mm}$

Reset Button

OF max.	0.55 to 2.79 N
OT \min.	0.4 mm

Slim Spring Plunger

Z-15ESR

*1. Stainless steel plunger (tip only, flat, R1 bevel).
*2. Plastic plunger

Plunger

OF max.	2.65 N
PT max.	0.4 mm
OT \min.	1.6 mm
OP	$28.2 \pm 0.5 \mathrm{~mm}$

Reset Button

OF max.	2.79 N
OT min.	0.4 mm

Hinge Lever

Z-15EWR

Reset Button

OF max.	2.94 N
OT min.	0.4 mm

[^10]
For details, be sure to read Safety Precautions for All Basic Switches.

Precautions for Safe Use

Terminal Connection

When soldering lead wires to the Switch, make sure that the capacity of the soldering iron is 60 W maximum. Do not take more than 5 s to solder any part of the Switch. The characteristics of the Switch will deteriorate if a soldering iron with a capacity of more than 60 W is applied to any part of the Switch for 5 s or more.

Operation

- Make sure that the switching frequency or speed is within the specified range.

1. If the switching speed is extremely slow, the contact may not be switched smoothly, which may result in a contact failure or contact welding.
2.If the switching speed is extremely fast, switching shock may damage the Switch soon. If the switching frequency is too high, the contact may not catch up with the speed.
The rated permissible switching speed and frequency indicate the switching reliability of the Switch.
The life of a Switch is determined at the specified switching speed. The life varies with the switching speed and frequency even when they are within the permissible ranges. In order to determine the life of a Switch model to be applied to a particular use, it is best to conduct an appropriate durability test on some samples of the model under actual conditions.

- Make sure that the actuator travel does not exceed the permissible OT position. The operating stroke must be set to 70% to 100% of the rated OT .

Precautions for Correct Use

Mounting Location

- Do not use the switch alone in atmospheres such as flammable or explosive gases. Arcing and heat generation associated with switching may cause fires or explosions.
- Switches are generally not constructed with resistance against water. Use a protective cover to prevent direct spraying if the switch is used in locations subject to splashing or spurting oil or water, dust adhering.

- Install the switch in a location that is not directly subject to debris and dust from cutting. The actuator and the switch body must be protected from accumulated cutting debris and dirt.

- Do not use the switch in locations subject to hot water (greater than $60^{\circ} \mathrm{C}$) or in water vapor.
- Do not use the switch outside the specified temperature and atmospheric conditions.
The permissible ambient temperature depends on the model. (Refer to the specifications in this catalog.) Sudden thermal changes may cause thermal shock to distort the switch and result in faults.

- Mount a cover if the switch is to be installed in a location where worker inattention could result in incorrect operation or accidents.

- Subjecting the switch to continuous vibration or shock may result in contact failure or faulty operation due to abrasion powder and in reduced durability. Excessive vibration or shock will cause the contacts to operate malfunction or become damaged. Mount the switch in a location that is not subject to vibration or shock and in a direction that does not subject the switch to resonance.
- If silver contacts are used with relatively low frequency for a long time or are used with microloads, the sulfide coating produced on the contact surface will not be broken down and contact faults will result. Use a microload switch that uses gold contacts.
- Do not use the switch in atmospheres with high humidity or heat or in harmful gases, such as sulfide gas ($\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$), ammonia gas $\left(\mathrm{NH}_{3}\right)$, nitric acid gas $\left(\mathrm{HNO}_{3}\right)$, or chlorine gas $\left(\mathrm{Cl}_{2}\right)$. Doing so may impair functionality, such as with damage due to contacting faults or corrosion.
- The switch includes contacts. If the switch is used in an atmosphere with silicon gas, arc energy may cause silicon oxide $\left(\mathrm{SiO}_{2}\right)$ to accumulate on the contacts and result in contact failure. If there is silicon oil, silicon filling, silicon wiring, or other silicon products in the vicinity of the switch, use a contact protection circuit to limit arcing and remove the source of the silicon gas.

Mounting

Always make sure that the power is turned OFF before mounting, removing, or wiring the Switch, or performing maintenance.
Electric shock or burning may occur.

Selecting Models

We recommend using Drip-proof Models (protection equivalent to IP62) in locations subject to floating dirt and dust. Other models do not have a protective structure.

Wiring

For wiring, use a wire size that is appropriate for the applied voltage and the supplied current. When soldering the Switch, make sure that the capacity of the soldering iron is 60 W maximum. Do not take more than 5 s to solder any part of the Switch. Using the Switch with incomplete soldering may result in errors and heat, which may cause burning. The characteristics of the Switch will deteriorate if a soldering iron with a capacity of more than 60 W is used or if any part of the Switch is soldered for 6 s or longer.

Tightening

The suitable tightening torque for screw terminals is given below.
Screw terminals except for those on Split-contact Models (Z-10FY-B)
: 0.78 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$
Screw terminals on Split-contact Models (Z-10FY-B)
: 0.49 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$

Operation

- Make sure that the switching speed and frequency are is within the specified ranges.

1. If the switching speed is extremely slow, the contacts may not be switched smoothly, which may result in a contact failure or contact welding.
2. If the switching speed is extremely fast, switching shock may damage the Switch prematurely. If the switching frequency is too high, the contacts may not be able to keep up with the speed.
The rated permissible switching speed and frequency indicate the switching reliability of the Switch.
The life of a Switch is determined at the specified switching speed. The life varies with the switching speed and frequency even when they are within the permissible ranges. Always conduct appropriate durability tests under actual conditions before using a Switch.

- Make sure that the actuator travel does not exceed the permissible OT position. The operating stroke must be set to 70% to 100% of the rated OT.

Panel Mount Switch (Z-15 $\square \square \square, \mathbf{Z - 0 1} \square \mathbf{Q} \square$)

- When mounting the panel mount plunger model with screws on a side surface, be careful of the dog angle and operation speed. Excessive dog angle or operation speed may damage the Switch.
- When using the panel mount plunger model mounted with screws on a side surface, be careful not to apply a large shock. Applying a shock exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may damage the Switch.
- When using the panel mount plunger model mounted with screws on a side surface, remove the hexagonal nuts from the actuator.

High-sensitivity Switch (Z-15H)/

Extra-high-sensitivity Switch (Z-15H2)

- When using the Switch in a DC circuit, be sure to provide an arc suppressor as well because the small contact gap of the Switch may result in contact troubles.
- In an application where a high repeat accuracy is required, limit the current that flows through the Switch to within 0.1 A . Also, use a relay to control a high-capacity load if the Switch is connected to such a load. (In this case, the exciting current of the relay coil is the load of the Switch.)
- Do not apply a force of 19.6 N or higher to the pin plunger.
- Exercise care that the environment conditions such as temperature and humidity do not change abruptly.

Micro Load Applicable Range

Using a model for ordinary loads to open or close the contact of a micro load circuit may result in faulty contact. Use models that operate in the following range. However, even when using micro load models within the operating range shown here, if inrush current occurs when the contact is opened or closed, it may increase contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary.
The minimum applicable load is the N -level reference value. This value indicates the malfunction reference level for the reliability level of $60 \%(\lambda 60)$. The equation, $\lambda 60=0.5 \times 10^{-6} /$ operations indicates that the estimated malfunction rate is less than $1 / 2,000,000$ operations with a reliability level of 60\%.

Models with Drip-proof Terminal Cover (Z- \square A55-B5V) Wiring

- To attach the Protective Cover to the case, hold the cover in almost parallel to the case and then push it to the case. If the cover is pushed diagonally, the rubber packing may slip off, degrading the sealability of the Switch.

- A cable 8.5 to 10.5 mm in diameter can be applicable to the sealing rubber of the lead outlet of the Switch. A two-core or three-core VCT cable having a cross-sectional area of $1.25 \mathrm{~mm}^{2}$ is especially suitable for this.
- Use M4 small screws with spring toothed washer are used as the terminal screws.

Drip-proof Switch (Z- $\square 55$)

- The Switch is not perfectly oil-tight; so do not dip it in oil or water.
- The rubber boots are made from weather-resistive chloroprene rubber.
- Do not use Basic Switches in places with radical changes in temperature.
- Rubber boots and rubber caps will tend to harden at lower ambient temperatures. If an Actuator is used in a pressed state for an extended period of time at low temperatures, it may return slowly or it may not return at all. OMRON can provide special Actuators for use at low temperature with rubber boots or rubber caps made of silicon rubber, which has superior resistance to cold. Ask your OMRON representative for details.

Split-contact Switch (Z-10F $\square \mathbf{Y}$)

The applicable current varies depending on how the contacts are used. If the Switch is connected in series, the Switch can endure a current 1.5 to 2 times higher than the current that can be applied in parallel connection.

Flexible Rod Switch (Z-15 \square NJ $\square 55$, Drip-proof)

- When the rod is fully swung, the Switch may operate when the lever
returns, causing chattering. Use a circuit that compensates for chattering wherever possible.
- Do not switch the rod to the fullest extent when the Switch is to break a power circuit because such a practice may cause meta deposition to occur between the mating contacts of the Switch.

Other Precautions

- Do not apply excessive force with a screwdriver or other tool when attaching or removing the Protective Cover. Doing so may deform the Switch.

- The Drip-proof Terminal Protective Cover can be sued only with

Switches with model numbers ending in "-B5V."

- Only the Terminal Protective Cover is available for maintenance.

Accessories (Order Separately)

Refer to Z/A/X/DZ Common Accessories for details about Terminal Covers, Separators, and Actuators.

Drip-proof Terminal Cover (Order Separately)

The Drip-proof Terminal Protective Cover is provided for maintenance for Z- \square A55-B5V Switches.

Ordering Information

Name	Model
Drip-proof Terminal Protective Cover	AP-DV

Dimensions
(Unit: mm)

Safety Precautions for All Basic Switches

For the individual precautions for a Switch, refer to the precautions in the section for that Switch.
Precautions for Safe Use

Always observe the following cautions to ensure safety.

Mounting

Before mounting, dismounting, wiring, or inspecting a switch, be sure to turn OFF the power supply to the switch, otherwise an electric shock may be received or the switch may burn.

Wiring

- Do not perform wiring when power is being supplied to a switch. Also, do not touch any of the charged terminals when power is being supplied. Otherwise, electric shock may be received.
- Follow the instructions provided in Correct Use for all wiring and soldering work. Using a switch with improper wiring or soldering may result in abnormal heating when power is supplied, possibly resulting in burning.

Contact Load

Select suitable switch ratings after confirming contact load. If the contact load is excessive for the contacts, the contacts may weld or shift, possibly resulting in short-circuits or burning when power is supplied.

Load Types

Some types of load have a large difference between steady-state current and inrush current, as shown in the following diagram. Select a switch with ratings suitable for the type of load. The higher the inrush current in the closed circuit is, the more the contact abrasion or shift there will be. Consequently, contact welding or shifting may occur, possibly resulting in short-circuits or burning.
Types of Load vs. Inrush Current

Operating Atmosphere

Do not use switches in atmospheres containing combustible or explosive gases. Arc or heat generated by switching may cause fires or explosions.

Shock on Individual Switches

Do not drop or disassemble switches. Not only will characteristics be jeopardized, but also damage, electric shock, or burning may result.

Durability

The durability of a switch greatly varies with switching conditions. Before using a switch, be sure to test the switch under actual conditions in the actual application and to use the switch within the switching operations causing no problem. If a deteriorated switch is used continuously, insulation failures, contact welding, contact failures, switch damage, or switch burnout may result.

Precautions for Correct Use

For details, refer to the Precautions for Correct Use in the Basic Switches Technical Guide.

Technical Guide for Basic Switches

Precautions for Correct Use of Basic Switches

Using Switches

- When switches are actually used, unforeseen accidents may occur. Before using a switch, perform all possible testing in advance.
- Unless otherwise specified, ratings and performances given in this catalog are for standard test conditions (i.e., 15 to $35^{\circ} \mathrm{C}, 25 \%$ to 75% humidity, and 86 to 106 kPa atmospheric pressure). When performing testing in the actual application, always use the same conditions as will be used in actual usage conditions for both the load and the operating environment.
- Reference data provided in this catalog represents actual measurements from production samples in graph form. All reference data values are nominal.
- All ratings and performance values provided in this catalog are the results of a single test each rating and performance value therefore may not be met for composite conditions.

Selecting Correct Switch

Select an appropriate switch for the operating environment and load conditions.

- Use the Selection Guide to select a suitable switch for the rated current, operating load, actuator type, and operating environment.
- It is not recommended to use a switch for a large current to switch a micro current, in terms of contact reliability. Select a switch that is suitable for the current actually being switched.
- Consider using a sealed switch in environments subject to water droplets.

Electrical Conditions

1. Operating Load

- The switching capacity of a switch significantly differs depending on whether the switch is used to break an alternating current or a direct current. Be sure to check both the AC and DC ratings of a switch. The control capacity will drop drastically if it is a DC load. This is because a DC load, unlike an AC load, has no current zero cross point. Therefore, if an arc is generated, it may continue for a comparatively long time. Furthermore, the current direction is always the same, which results in contact relocation phenomena, and the contacts hold each other with ease and will not separate if the surfaces of the contacts are uneven.
- If the load is inductive, counter-electromotive voltage will be generated. The higher the voltage is, the higher the generated energy is, which increase the abrasion of the contacts and contact relocation phenomena. Make sure to use a switch within the rated conditions.
- If a switch is used for switching both micro and high-capacity loads,
be sure to connect relays suitable to the loads.
- The rated loads of a switch are according to the following conditions:

Inductive Load: A load having a minimum power factor of 0.4
(AC) or a maximum time constant of 7 ms (DC).
Lamp Load: A load having an inrush current ten times the steady-state current.
Motor Load: A load having an inrush current six times the steadystate current.
Note: It is important to know the time constant (L/R) of an inductive load in a DC circuit.
Inrush Current

2. Using Switches with Electronic Circuits

- If bouncing or chattering of the contacts results and causes problems, take the following countermeasures.
(a) Insert an integral circuit.
(b) Suppress the generation of pulse from the contact bouncing or chattering of the contacts so that it is less than the noise margin of the load.
- Use microload switches that use gold contacts particularly if high contact reliability is required.
- In order to protect the Switch from damage due to short-circuits, be sure to connect a quick-response fuse with a breaking current 1.5 to 2 times larger than the rated current to the Switch in series. When complying with EN approved ratings, use a 10-A IEC 60269compliant gl or gG fuse.

3. Using Switches for Micro Loads

Contact faults may occur if a Switch for a general-load is used to switch a micro load circuit. Use switches in the ranges shown in the diagram on the right. However, even when using micro load models within the operating range shown here, if inrush current occurs when the contact is opened or closed, it may increase contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary. The minimum applicable load is the N-level reference value. This value indicates the malfunction reference level for the reliability level of $60 \%\left(\lambda_{60}\right)$.
The equation, $\lambda_{60}=0.5 \times 10^{-6} /$ operations indicates that the estimated malfunction rate is less than $1 / 2,000,000$ operations with a reliability level of 60%.

4. Contact Protective Circuit

Apply a contact protective circuit (e.g., surge protector) to increase the contact durability, prevent noise, and suppress the generation of carbide or nitric acid. Be sure to apply the contact protective circuit correctly. Otherwise, an adverse effect may occur.
The following provides typical examples of contact protective circuits. If the Switch is used in an excessively humid location for switching a load
that easily generates arcs, such as an inductive load, the arcs may generate NOx , which will change into HNO_{3} if it reacts with moisture. Consequently, the internal metal parts may corrode and the Switch may fail. Be sure to select the ideal contact preventive circuit from the following. Also, load operating times may be delayed somewhat if a contact protective circuit (a surge killer) is used.

Typical Examples of Contact Protective Circuits (Surge Killers)

Circuit example		Applicable current		Feature	Element selection
		AC	DC		
CR circuit		$\Delta *$	0	* When AC is switched, the load impedance must be lower than the C and R impedance.	C: 0.5 to $1 \mu \mathrm{~F}$ per switching current (1 A) R: 0.5 to 1Ω per switching voltage (1 V) The values may change according to the characteristics of the load. The capacitor suppresses the spark discharge of current when the contacts are open. The resistor limits the inrush current when the contacts are closed again. Consider these roles of the capacitor and resistor and determine the ideal capacitance and resistance values from experimentation. Use a capacitor with a dielectric strength between 200 and 300 V . When AC is switched, make sure that the capacitor has no polarity. If, however, the ability to control arcs between contacts is a problem for high DC voltage, it may be more effective to connect a capacitor and resistor between the contacts across the load. Check the results by testing in the actual application.
		0	0	The operating time will increase if the load is a relay or solenoid. It is effective to connect the CR circuit in parallel to the load when the power supply voltage is 24 or 48 V and in parallel to the contacts when the power supply voltage is 100 to 200 V .	
Diode method		\times	0	Energy stored in the coil is changed into current by the diode connected in parallel to the load. Then the current flowing to the coil is consumed and Joule heat is generated by the resistance of the inductive load. The reset time delay in this method is longer than that of the CR method.	The diode must withstand a peak inverse voltage 10 times higher than the circuit voltage and a forward current as high as or higher than the load current.
Diode and Zener diode method		\times	0	This method will be effective if the reset time delay caused by the diode method is too long.	Zener voltage for a Zener diode must be about 1.2 times higher than the power source since the load may not work under some circumstances.
Varistor method		O	0	This method makes use of constant-voltage characteristic of the varistor so that no high-voltage is imposed on the contacts. This method causes a reset time delay more or less. It is effective to connect varistor in parallel to the load when the supply voltage is 24 to 48 V and in parallel to the contacts when the supply voltage is 100 to 200 V .	Select the varistor so that the following condition is met for the cut voltage Vc . For AC currents, the value must be multiplied by $\sqrt{2}$. Vc>(Current Voltage $\times 1.5$) If V c is set too high, however, the voltage cut for high voltages will no longer be effective, diminishing the effect.

Do not apply contact protective circuit as shown below.

This circuit effectively suppresses arcs when the contacts are OFF. When the contacts are ON again, however, charge current flows to the capacitor, which may result in contact weld.

Connections

- With contact form Za , do not connect a power supply of different polarity or different types to one switch.

Example of Power Supply Connection

(Connection with Different Polarity)

Connect the load to the same polarity side.

Example of Incorrect Power Supply Connection (Connection with Different Type of Power Supply) There is a danger of AC and DC becoming mixed.

Mechanical Conditions

1. Operating Stroke Setting

The setting of stroke is very important for a switch to operate with high reliability.
The chart below shows the relationship among operating force, stroke, and contact force. To obtain high reliability from a switch, a switch actuator must be manipulated within an appropriate range of operating force. Be sure to pay the utmost attention when mounting a switch.

- Make sure that the operating body is set so that the actuator should return to the free position when the operating body has moved if a switch is used to form a normally closed (NC) circuit. If a switch is used to form a normally open (NO) circuit, the operating body must move the switch actuator to the distance of 70% to 100% of the rated overtravel (OT) of the switch.
- If stroke is set in the vicinity of the operating position (OP) or the releasing position (RP), contact force may become unstable. As a result, the switch cannot ensure high reliability. Furthermore, the switch may malfunction due to vibration or shock.
- If stroke is set exceeding the total travel position (TTP), the moment of inertia of the operating body may damage the actuator or the switch itself, and the stress applied to the moving spring inside the switch will increase and then, the durability of the switch may be deteriorated.

2. Switching Speed and Frequency

The switching frequency and speed of a switch have a great influence on the performance of the switch. Pay attention to the following.

- If the actuator is operated too slowly, the switching operation may become unstable, causing contact failures or contact welding.
- If the actuator is operated too quickly, the switch may be damaged by shock.
- If the switching frequency is too high, the switching of the contacts cannot catch up with the operating speed of the actuator.
- If the operating frequency is extremely low (i.e., once a month or less frequent), a film may be generated on the surface of the contacts, which may cause contact failures.
The permissible switching speed and switching frequency of a switch indicate the operational reliability of the switch.
The durability of a switch is based on operation under specific conditions regarding the switching speed and switching frequency. The durability of a switch may not meet the durability due to conditions even if the switch is operated within the permissible switching speed and frequency ranges. Test a switch sample under the actual conditions to ascertain its durability.

3. Operating Condition

Do not leave a switch with the actuator depressed for a long time, otherwise the parts of the switch may soon deteriorate and the changes of its characteristics operating may result.

4. Operating Method

The operating method has a great influence on the performance of a switch. Consider the following before operating a switch.

- Design the operating body (i.e., cam or dog) so that it will operate the actuator smoothly. If the actuator snaps backwards quickly or receives shock due to the shape of the operating body, its durability may be deteriorated.

Incorrect

- Make sure that no improper force is applied to the actuator, otherwise the actuator may incur local abrasion. As a result, the actuator may become damaged or its durability may be deteriorated.

- Make sure that the operating body moves in a direction where the actuator moves. If the actuator is a pin plunger type, make sure that the operating body presses the pin plunger vertically.

- Operate the actuator of a hinge roller lever or simulated hinge lever type in the direction shown below.

- Set the angle of the cam or dog (θ) for roller levers and similar actuators to the range between 30° and 45°. If the angle is too large, an abnormally large horizontal stress will be applied to the lever.
- Do not modify the actuator. If the actuator is modified, excessive external force may be
 applied to the internal switch mechanism, characteristics may change, and the switch may stop functioning.
- If an external actuator is used as an operating object, check the material and thickness of the lever to make sure that the force applied to the lever is within the permissible range.

Mounting

1. Securing

When mounting a switch, be sure to use the specified mounting screws and tighten the screws with flat washers or spring washers securely. However, the switch housing may incur crack damage if it comes into contact with the spring washers directly. In that case make sure that the flat washers come into contact with the switch housing as shown below. Do not subject the switch to excessive shock or highfrequency vibrations when mounting (e.g., do not use an impact driver) as it may cause contacts stick or switch damage.

- Do not modify the switch in any way, for example, by widening the mounting holes.

Locking Agent

If glue or locking agent is applied, make sure that it does not stick to the moving parts or intrude into the inside of the switch, otherwise the switch may have operating failure or contact failure. Some types of glue or locking agent may generate gas that has a bad influence on the switch. Pay the utmost attention when selecting glue or locking agent.

Wiring

Make sure that the lead wires are connected with no inappropriate pulling force.

Mounting Location

- Do not use the switch alone in atmospheres such as flammable or explosive gases. Arcing and heat generation associated with switching may cause fires or explosions.
- Switches are generally not constructed with resistance against water. Use a protective cover to prevent direct spraying if the switch is used in locations subject to splashing or spurting oil or water, dust adhering.

- Install the switch in a location that is not directly subject to debris and dust from cutting. The actuator and the switch body must be protected from accumulated cutting debris and dirt.

- Do not use the switch in locations subject to hot water ($60^{\circ} \mathrm{C}$ min.) or in water vapor.
- Do not use the switch outside the specified temperature and atmospheric conditions.
The permissible ambient temperature depends on the model. (Refer to the specifications in this catalog.) Sudden thermal changes may cause thermal shock to distort the switch and result in faults.

- Mount a cover if the switch is to be installed in a location where worker inattention could result in incorrect operation or accidents.

- Subjecting the switch to continuous vibration or shock may result in contact failure or faulty operation due to abrasion powder and in reduced durability. Excessive vibration or shock will cause the contacts to operate malfunction or become damaged. Mount the switch in a location that is not subject to vibration or shock and in a direction that does not subject the switch to resonance.
- If silver contacts are used with relatively low frequency for a long time or are used with microloads, the sulfide coating produced on the contact surface will not be broken down and contact faults will result. Use a microload switch that uses gold contacts.
- Do not use the switch in atmospheres with high humidity or heat or in harmful gases, such as sulfide gas ($\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$), ammonia gas $\left(\mathrm{NH}_{3}\right)$, nitric acid gas $\left(\mathrm{HNO}_{3}\right)$, or chlorine gas $\left(\mathrm{Cl}_{2}\right)$. Doing so may impair functionality, such as with damage due to contacting faults or corrosion.
- The switch includes contacts. If the switch is used in an atmosphere with silicon gas, arc energy may cause silicon oxide $\left(\mathrm{SiO}_{2}\right)$ to accumulate on the contacts and result in contact failure. If there is silicon oil, silicon filling, silicon wiring, or other silicon products in the vicinity of the switch, use a contact protection circuit to limit arcing and remove the source of the silicon gas.

Maintenance and Inspection

Make sure that a switch is mounted in locations that allow easy inspection or replacement of the switch.

Difficult to inspect

Easy to inspect

The cover must be located in the direction ensuring ease o maintenance or inspection.

Operation and Storage Environment

1. Handling

Do not apply oil, grease, or other lubricants to the sliding parts of a switch. The intrusion of oil, grease, or other lubricants into the internal part may cause operating failure or contact failure.

2. Storage Environment

When storing a switch, consider countermeasures (e.g., storing in a plastic bag) to prevent discoloration resulting from sulphurisation of terminals (silver-plated).
Make sure that the location is free of harmful gas and does not have high temperature or humidity. It is recommended that a switch be inspected before use if it is stored for three months or more after the production, depending on the location.

Mounting Direction

When using a switch with a low operating force mounted with a long lever, make sure that the switch is mounted in the direction where the weight of the lever is not applied to the pushbutton directly, otherwise the switch may have releasing failures.

2. Terminal Connections

Solder Terminals

- When soldering lead wires to a switch, make sure that the temperature of the iron tip is $380^{\circ} \mathrm{C}$ maximum. Improper soldering may cause abnormal heat radiation from the switch and the switch may burn.
- Complete soldering within 5 seconds at $350^{\circ} \mathrm{C}$ or within 3 seconds at $380^{\circ} \mathrm{C}$. If heat is applied for longer period of time, switch characteristics will be deteriorated, e.g., the case will melt and lead wire insulation will scorch.

Quick-Connect Terminals

Use the specified receptacles to connect to quick-connect terminals. Do not apply excessive force horizontally or vertically to the terminals, otherwise the terminal may be deformed or the housing may be damaged.

Wiring Work

- When wiring a switch, check the insulation distance between the switch and the mounting plate. If the insulation distance is insufficient, use an insulation guard or separator. Be particularly careful when mounting a switch to metal.
- Use wire sizes suitable for the applied voltage and carrying current.
- Do not wire a switch while power is being supplied.

Using Separators

If providing sufficient insulation distance is a problem or there are metal components or copper wire near a switch, use a switch with an insulation guard or use a separator (order separately) to provide sufficient insulation distance.

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS, OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the product may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased product.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

ERRORS AND OMISSIONS

The information in this catalog has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

COPYRIGHT AND COPY PERMISSION

This catalog shall not be copied for sales or promotions without permission.
This catalog is protected by copyright and is intended solely for use in conjunction with the product. Please notify us before copying or reproducing this catalog in any manner, for any other purpose. If copying or transmitting this catalog to another, please copy or transmit it in its entirety.

[^0]: ＊1．๒：Solder terminal 号：Screw terminal

[^1]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions

[^2]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions

[^3]: ** The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers. Reverse-type models are highly vibration- and shock-resistive because the pin plungers are normally pressed.
 Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

[^4]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions

[^5]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

[^6]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions

[^7]: * The pin plungers of reverse-type models are continuously pressed by the actuator levers with compression coil springs and the pin plungers are freed by operating the levers.
 Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

[^8]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

[^9]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions

[^10]: Note: Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

