ESP32-WROOM-32D & ESP32-WROOM-32U Datasheet

Version 1.4

Espressif Systems

About This Document

This document provides the specifications for the ESP32-WROOM-32D and ESP32-WROOM-32U modules.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation. Please subscribe here.

Certification

Download certificates for Espressif products from here.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABIL-ITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2018 Espressif Inc. All rights reserved.

Contents

1	Overview	1
2 2.1 2.2 2.3	Pin Definitions Pin Layout Pin Description Strapping Pins	3 3 3 5
3 3.1 3.2 3.3 3.4	Crystal Oscillators	6 6 6 7
4	Peripherals and Sensors	8
5 .1 5.2 5.3 5.4 5.5	Wi-Fi Radio BLE Radio 5.5.1 Receiver 5.5.2 Transmitter	9 9 9 10 10 10 11 12
6	Schematics	13
7	Peripheral Schematics	15
8	Physical Dimensions	17
9	Recommended PCB Land Pattern	19
10	U.FL Connector Dimensions	20
11.1	Learning Resources 1 Must-Read Documents 2 Must-Have Resources	21 21 21
Re	evision History	22

List of Tables

1	ESP32-WROOM-32D vs. ESP32-WROOM-32U	1
2	ESP32-WROOM-32D and ESP32-WROOM-32U Specifications	2
3	Pin Definitions	3
4	Strapping Pins	5
5	Power Consumption by Power Modes	7
6	Absolute Maximum Ratings	9
7	Recommended Operating Conditions	9
8	DC Characteristics	9
9	Wi-Fi Radio Characteristics	10
10	Receiver Characteristics – BLE	10
11	Transmitter Characteristics – BLE	11

List of Figures

1	ESP32-WROOM-32D Pin layout	3
2	Reflow Profile	12
3	ESP32-WROOM-32D Schematics	13
4	ESP32-WROOM-32U Schematics	14
5	ESP32-WROOM-32D & ESP32-WROOM-32U Peripheral Schematics	15
6	Physical Dimensions of ESP32-WROOM-32D	17
7	Physical Dimensions of ESP32-WROOM-32U	18
8	Recommended PCB Land Pattern of ESP32-WROOM-32D	19
9	Recommended PCB Land Pattern of ESP32-WROOM-32U	19
10	ESP32-WROOM-32U U.FL Dimensions	20

1. Overview

ESP32-WROOM-32D and ESP32-WROOM-32U are powerful, generic Wi-Fi+BT+BLE MCU modules that target a wide variety of applications, ranging from low-power sensor networks to the most demanding tasks, such as voice encoding, music streaming and MP3 decoding. ESP32-WROOM-32U is different from ESP32-WROOM-32D in that ESP32-WROOM-32U integrates a U.FL connector. For detailed information of the U.FL connector please see Chapter 10.

Module	ESP32-WROOM-32D	ESP32-WROOM-32U		
Core	ESP32-D0WD	ESP32-DOWD		
SPI flash	32 Mbits, 3.3V	32 Mbits, 3.3V		
Crystal	40 MHz	40 MHz		
Antenna	onboard antenna	U.FL connector (which needs to be connected		
Antenna		to an external IPEX antenna)		
Dimensions (18±0.2) x (25.5±0.2) x (3.1±0.15) (See Figure		(18±0.1) x (19.2±0.1) x (3.2±0.1) (See Figure 7		
(Unit: mm)	6 for details)	for details)		
Schematics	See Figure 3 for details.	See Figure 4 for details.		

Table 1: ESP32-WROOM-32D vs. ESP32-WROOM-32U

At the core of the two modules are the ESP32-D0WD chip*. The chip embedded is designed to be scalable and adaptive. There are two CPU cores that can be individually controlled, and the CPU clock frequency is adjustable from 80 MHz to 240 MHz. The user may also power off the CPU and make use of the low-power co-processor to constantly monitor the peripherals for changes or crossing of thresholds. ESP32 integrates a rich set of peripherals, ranging from capacitive touch sensors, Hall sensors, SD card interface, Ethernet, high-speed SPI, UART, I2S and I2C.

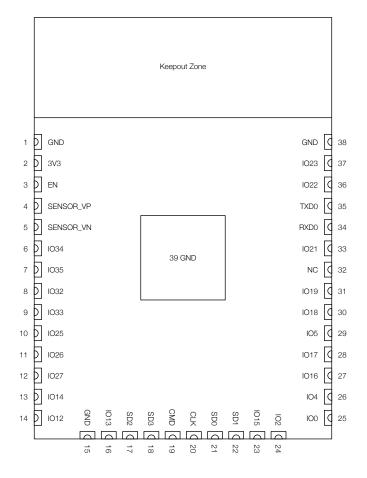
Note:

* For details on the part number of the ESP32 series, please refer to the document <u>ESP32 Datasheet</u>.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted, and that the module is future proof: using Wi-Fi allows a large physical range and direct connection to the internet through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 μ A, making it suitable for battery powered and wearable electronics applications. ESP32 supports a data rate of up to 150 Mbps, and 20.5 dBm output power at the antenna to ensure the widest physical range. As such the chip does offer industry-leading specifications and the best performance for electronic integration, range, power consumption, and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwIP; TLS 1.2 with hardware acceleration is built in as well. Secure (encrypted) over the air (OTA) upgrade is also supported, so that developers can continually upgrade their products even after their release.

1


Table 2 provides the specifications of ESP32-WROOM-32D and ESP32-WROOM-32U.

Categories	Items	Specifications
	RF Certification	FCC/CE (RED)/IC/TELEC/KCC/SRRC/NCC
Certification	Wi-Fi Certification	Wi-Fi Alliance
	Bluetooth certification	BQB
	Green Certification	REACH/RoHS
		802.11 b/g/n (802.11n up to 150 Mbps)
	Protocols	A-MPDU and A-MSDU aggregation and 0.4 μ s guard
Wi-Fi		interval support
	Frequency range	2.4 ~ 2.5 GHz
	Protocols	Bluetooth v4.2 BR/EDR and BLE specification
		NZIF receiver with –97 dBm sensitivity
Bluetooth	Radio	Class-1, class-2 and class-3 transmitter
		AFH
	Audio	CVSD and SBC
		SD card, UART, SPI, SDIO, I2C, LED PWM, Motor
	Module interface	PWM, I2S, IR
		GPIO, capacitive touch sensor, ADC, DAC
	On-chip sensor	Hall sensor
	On-board clock	40 MHz crystal
	Operating voltage/Power supply	2.7 ~ 3.6V
Hardware	Operating current	Average: 80 mA
	Minimum current delivered by power supply	500 mA
	Recommended operating tem- perature range	-40°C ∼ +85°C
	Wi-Fi mode	Station/SoftAP/SoftAP+Station/P2P
	Wi-Fi Security	WPA/WPA2/WPA2-Enterprise/WPS
	Encryption	AES/RSA/ECC/SHA
	Eirmwara ungrada	UART Download / OTA (download and write firmware
Software	Firmware upgrade	via network or host)
	Software development	Supports Cloud Server Development / SDK for cus-
		tom firmware development
	Network protocols	IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
	User configuration	AT instruction set, cloud server, Android/iOS app

Table 2: ESP32-WROOM-32D and ESP32-WROOM-32U Specifications

2. Pin Definitions

2.1 Pin Layout

Figure 1: ESP32-WROOM-32D Pin layout

Note:

The pin layout of ESP32-WROOM-32U is the same as that of ESP32-WROOM-32D, except that ESP32-WROOM-32U has no keepout zone.

2.2 Pin Description

The ESP32-WROOM-32D and ESP32-WROOM-32U have 38 pins. See pin definitions in Table 3.

Table 3: Pin Definitions

Name	No.	Туре	Function
GND	1	Р	Ground
3V3	2	Р	Power supply
EN	3	I	Module-enable signal. Active high.
SENSOR_VP	4	I	GPIO36, ADC1_CH0, RTC_GPIO0
SENSOR_VN	5	I	GPIO39, ADC1_CH3, RTC_GPIO3
IO34	6	I	GPIO34, ADC1_CH6, RTC_GPIO4
IO35	7	I	GPIO35, ADC1_CH7, RTC_GPIO5

З

Name	No.	Туре	Function
IO32	8	I/O	GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4, TOUCH9, RTC_GPIO9
			GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,
033 9 1/0		I/O	TOUCH8, RTC_GPI08
IO25	10	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0
IO26	11	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1
IO27	12	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
IO14	13	I/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK, SD_CLK, EMAC_TXD2
IO12	14	I/O	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2, SD_DATA2, EMAC_TXD3
GND	15	P	Ground
			GPI013, ADC2_CH4, TOUCH4, RTC_GPI014, MTCK, HSPID,
IO13	16	I/O	HS2_DATA3, SD_DATA3, EMAC_RX_ER
SHD/SD2*	17	I/O	GPIO9, SD DATA2, SPIHD, HS1 DATA2, U1RXD
SWP/SD3*	18	I/O	GPIO10, SD DATA3, SPIWP, HS1 DATA3, U1TXD
SCS/CMD*	19	I/O	GPI011, SD_CMD, SPICS0, HS1_CMD, U1RTS
SCK/CLK*	20	I/O	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS
SDO/SD0*	21	I/O	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS
SDI/SD1*	22	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS
IO15	23	I/O	GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICSO, RTC_GPIO13, HS2_CMD, SD_CMD, EMAC_RXD3
102	24	I/O	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0, SD DATA0
			GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,
100	25	I/O	EMAC_TX_CLK
			GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,
IO4	26	I/O	SD_DATA1, EMAC_TX_ER
IO16	27	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT
IO17	28	I/O	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180
IO5	29	I/O	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK
IO18	30	I/O	GPIO18, VSPICLK, HS1_DATA7
IO19	31	I/O	GPIO19, VSPIQ, UOCTS, EMAC_TXD0
NC	32	-	-
IO21	33	I/O	GPIO21, VSPIHD, EMAC_TX_EN
RXD0	34	I/O	GPIO3, U0RXD, CLK_OUT2
TXD0	35	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2
IO22	36	I/O	GPIO22, VSPIWP, UORTS, EMAC_TXD1
IO23	37	I/O	GPIO23, VSPID, HS1_STROBE
GND	38	P	Ground

Important:

* Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD, namely, GPIO6 to GPIO11 are connected to the integrated SPI flash integrated on the module and are not recommended for other uses.

2.3 Strapping Pins

ESP32 has five strapping pins, which can be seen in Chapter 6 Schematics:

- MTDI
- GPIO0
- GPIO2
- MTDO
- GPI05

Software can read the values of these five bits from register "GPIO_STRAPPING".

During the chip's system reset (power-on-reset, RTC watchdog reset and brownout reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. The strapping bits configure the device's boot mode, the operating voltage of VDD_SDIO and other initial system settings.

Each strapping pin is connected to its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32.

After reset, the strapping pins work as normal-function pins.

Refer to Table 4 for a detailed boot-mode configuration by strapping pins.

Voltage of Internal LDO (VDD_SDIO)								
Pin	Default	3.5	3V	1.8V				
MTDI	Pull-down	()	-	1			
			Booting Mode					
Pin	Default	SPI	Boot	Downlo	ad Boot			
GPIO0	Pull-up	-	1	()			
GPIO2	Pull-down	Don't	-care	()			
	E	Enabling/Disabling Deb	ugging Log Print over l	JOTXD During Booting				
Pin	Default	U0TXD ⁻	Toggling	U0TXD Silent				
MTDO	Pull-up	-	l	0				
			Timing of SDIO Slave					
Falling-edge Input		Falling-edge Input	Rising-edge Input	Rising-edge Input				
Pin Default Falling-edge Output Rising-edge		Rising-edge Output	Falling-edge Output	Rising-edge Output				
MTDO	Pull-up	0 0		1	1			
GPIO5	Pull-up	0	1	0	1			

Table 4: Strapping Pins

Note:

• Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave" after booting.

• Both ESP32-WROOM-32D and ESP32-WROOM-32U integrate a 3.3V SPI flash, so the pin MTDI cannot be set to 1 when the modules are powered up.

3. Functional Description

This chapter describes the modules and functions integrated in ESP32-WROOM-32D and ESP32-WROOM-32U.

3.1 CPU and Internal Memory

ESP32-D0WD contains a dual-core Xtensa[®] 32-bit LX6 MCU. The internal memory includes:

- 448 kB of ROM for booting and core functions.
- 520 kB of on-chip SRAM for data and instructions.
- 8 kB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is accessed by the main CPU during RTC Boot from the Deep-sleep mode.
- 8 kB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by the co-processor during the Deep-sleep mode.
- 1 kbit of eFuse: 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including flash-encryption and chip-ID.

3.2 External Flash and SRAM

ESP32 supports multiple external QSPI flash and SRAM chips. More details can be found in Chapter SPI in the *ESP32 Technical Reference Manual*. ESP32 also supports hardware encryption/decryption based on AES to protect developers' programs and data in flash.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

- Up to 16 MB of external flash can be mapped into CPU instruction memory space and read-only memory space simultaneously.
 - When external flash is mapped into CPU instruction memory space, up to 11 MB+248 KB can be mapped at a time. Note that if more than 3 MB+248 KB are mapped, cache performance will be reduced due to speculative reads by the CPU.
 - When external flash is mapped into read-only data memory space, up to 4 MB can be mapped at a time. 8-bit, 16-bit and 32-bit reads are supported.
- External SRAM can be mapped into CPU data memory space. SRAM up to 8 MB is supported and up to 4 MB can be mapped at a time. 8-bit, 16-bit and 32-bit reads and writes are supported.

Both ESP32-WROOM-32D and ESP32-WROOM-32U integrate a 4 MB of external SPI flash. The 4-MB SPI flash can be memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported. The integrated SPI flash is connected to GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 and GPIO11. These six pins cannot be used as regular GPIOs.

6

3.3 Crystal Oscillators

The module uses a 40-MHz crystal oscillator.

3.4 RTC and Low-Power Management

With the use of advanced power-management technologies, ESP32 can switch between different power modes.

- Power modes
 - Active mode: The chip radio is powered on. The chip can receive, transmit, or listen.
 - Modem-sleep mode: The CPU is operational and the clock is configurable. The Wi-Fi/Bluetooth baseband and radio are disabled.
 - Light-sleep mode: The CPU is paused. The RTC memory and RTC peripherals, as well as the ULP co-processor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip.
 - Deep-sleep mode: Only RTC memory and RTC peripherals are powered on. Wi-Fi and Bluetooth connection data are stored in the RTC memory. The ULP co-processor is functional.
 - Hibernation mode: The internal 8-MHz oscillator and ULP co-processor are disabled. The RTC recovery
 memory is powered down. Only one RTC timer on the slow clock and certain RTC GPIOs are active.
 The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

The power consumption varies with different power modes and work statuses of functional modules. Please see Table 5 for details.

Power mode	Description	Power consumption	
	Wi-Fi Tx packet		
Active (RF working)	Wi-Fi / BT Tx packet	Please refer to ESP32 Datasheet.	
	Wi-Fi / BT Rx and listening		
		Max speed 240 MHz: 30 mA ~ 50 mA	
Modem-sleep	The CPU is powered on.	Normal speed 80 MHz: 20 mA ~ 25 m	
		Slow speed 2 MHz: 2 mA ~ 4 mA	
Light-sleep	-	0.8 mA	
	The ULP co-processor is powered on.	150 μA	
Deep-sleep	ULP sensor-monitored pattern	100 μA @1% duty	
	RTC timer + RTC memory	10 µA	
Hibernation	RTC timer only	5 µA	
Power off	CHIP_PU is set to low level, the chip is powered off	0.1 μΑ	

Table 5: Power Consumption by Power Modes

Note:

- When Wi-Fi is enabled, the chip switches between Active and Modem-sleep mode. Therefore, power consumption changes accordingly.
- In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.
- During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to operate.
- When the system works in the ULP sensor-monitored pattern, the ULP co-processor works with the ULP sensor periodically; ADC works with a duty cycle of 1%, so the power consumption is 100 μ A.

4. Peripherals and Sensors

Please refer to Section Peripherals and Sensors in <u>ESP32 Datasheet</u>.

Note:

External connections can be made to any GPIO except for GPIOs in the range 6-11. These six GPIOs are connected to the module's integrated SPI flash. For details, please see Section 6 Schematics.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device.

Table 6: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	-	-0.3	3.6	V
T _{store}	Storage temperature	-40	150	°C

5.2 Recommended Operating Conditions

Symbol Unit Parameter Min Typical Max VDD33 2.7 3.3 3.6 V _ Current delivered by external power supply 0.5 А IVDD _ -Т Operating temperature -4085 °C -

Table 7: Recommended Operating Conditions

5.3 DC Characteristics (3.3V, 25°C)

Symbol Parameter Min Unit Тур Max _ 2 _ C_{IN} Pin capacitance pF High-level input voltage $0.75 \times VDD^1$ VDD + 0.3 V V_{IH} _ V_{IL} Low-level input voltage -0.3 _ 0.25 × VDD V High-level input current 50 nA $|_{IH}$ _ _ 50 nA Low-level input current _ $|_{IL}$ _ V V_{OH} $0.8 \times VDD$ High-level output voltage _ $0.1 \times VDD$ V V_{OL} Low-level output voltage _ _ High-level source current (VDD = 3.3V, V_{OH} = 40 mΑ $|_{OH}$ 2.64V, PAD DRIVER = 3) Low-level sink current (VDD = 3.3V, V_{OL} = 28 mΑ $|_{OL}$ 0.495V, PAD_DRIVER = 3) R_{PU} Pull-up resistor _ 45 _ kΩ Pull-down resistor 45 _ kΩ R_{PD} _ Low-level input voltage of EN to reset the mod-V 0.6 V_{IL_nRST} ule

Table 8: DC Characteristics

1. VDD is the I/O voltage for a particular power domain of pins. More details can be found in Appendix IO_MUX of ESP32 Datasheet.

5.4 Wi-Fi Radio

Description	Min	Typical	Max	Unit
Input frequency	2412	-	2484	MHz
Output impedance*	-	*	-	Ω
	Tx power			
Output power of PA for 72.2 Mbps	13	14	15	dBm
Output power of PA for 11b mode	19.5	20	20.5	dBm
	Sensitivity	,		
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
OFDM, 6 Mbps	-	-93	-	dBm
OFDM, 54 Mbps	-	-75	-	dBm
HT20, MCS0	-	-93	-	dBm
HT20, MCS7	-	-73	-	dBm
HT40, MCS0	-	-90	-	dBm
HT40, MCS7	-	-70	-	dBm
MCS32	-	-89	-	dBm
A	djacent channel	rejection		
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

Table 9: Wi-Fi Radio Characteristics

*For the modules that use IPEX antennas, the output impedance is 50Ω . For other modules without IPEX antennas, users do not need to concern about the output impedance.

5.5 BLE Radio

5.5.1 Receiver

Table 10: Receiver Characteristics – BLE

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-	-	-97	-	dBm
Maximum received signal @30.8% PER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 – 1 MHz	-	-5	-	dB
Adiagant abannal adjactivity C/L	F = F0 + 2 MHz	-	-25	-	dB
Adjacent channel selectivity C/I	F = FO - 2 MHz	-	-35	-	dB
	F = FO + 3 MHz	-	-25	-	dB
	F = F0 – 3 MHz	-	-45	-	dB

Parameter	Conditions	Min	Тур	Max	Unit
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out of band blocking porformance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
Out-of-band blocking performance	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

5.5.2 Transmitter

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power	-	-	0	-	dBm
Gain control step	-	-	3	-	dBm
RF power control range	-	-12	-	+12	dBm
Adjacent channel transmit power	$F = F0 \pm 2 MHz$	-	-52	-	dBm
	$F = F0 \pm 3 MHz$	-	-58	-	dBm
	$F = F0 \pm > 3 MHz$	-	-60	-	dBm
$\Delta f 1_{\text{avg}}$	-	-	-	265	kHz
$\Delta f_{2\max}$	-	247	-	-	kHz
$\Delta f 2_{avg} / \Delta f 1_{avg}$	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μs
Drift	-	-	2	-	kHz

Table 11: Transmitter Characteristics – BLE

5.6 Reflow Profile

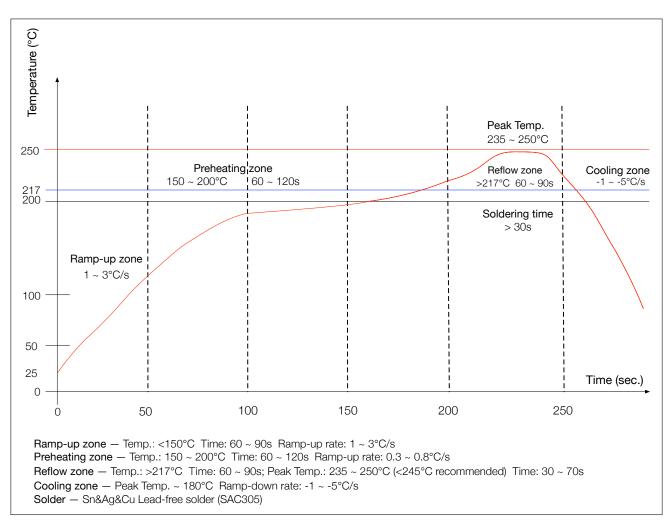


Figure 2: Reflow Profile

6. Schematics

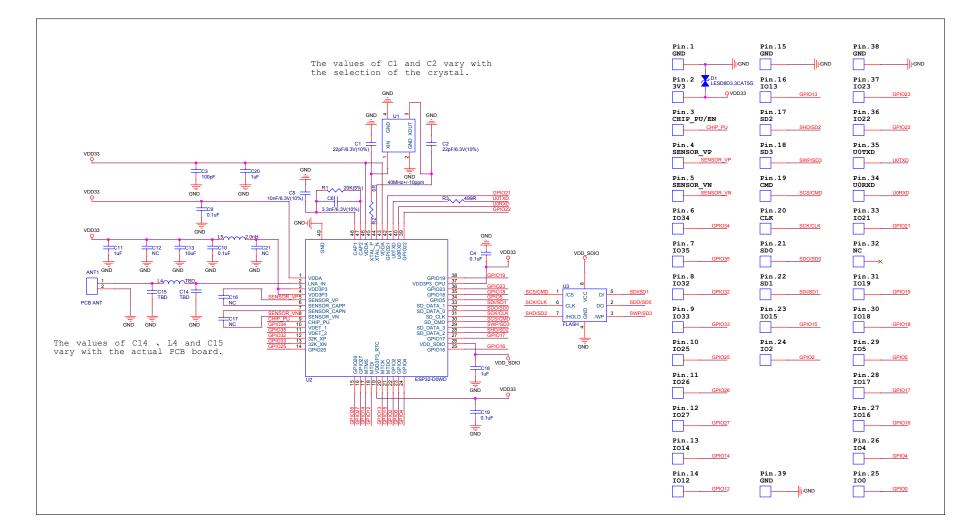
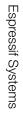



Figure 3: ESP32-WROOM-32D Schematics

ω

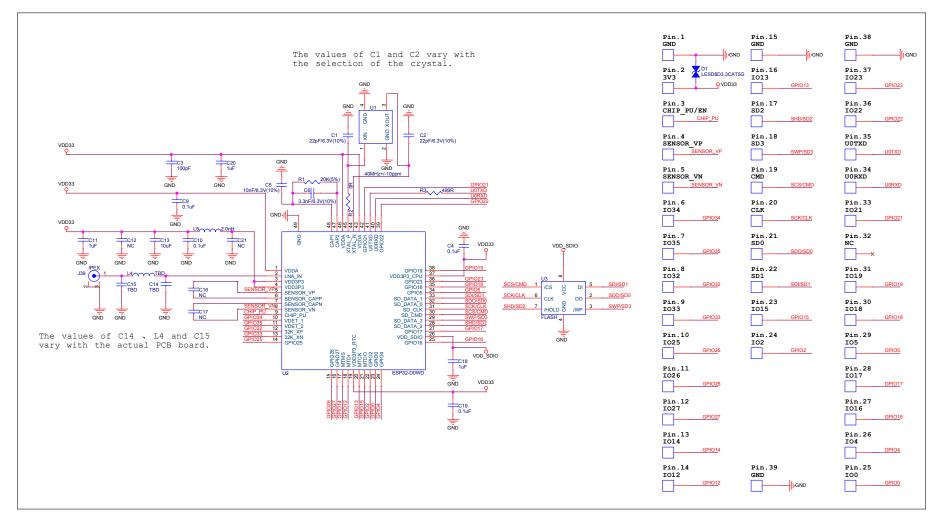
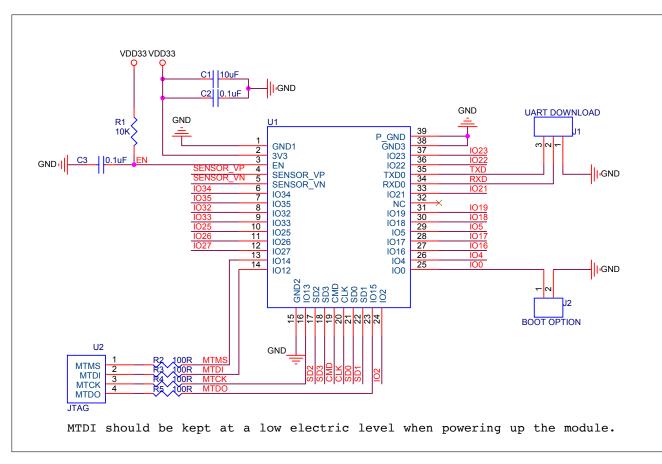



Figure 4: ESP32-WROOM-32U Schematics

7. Peripheral Schematics

 \geq

PERIPHERAL SCHEMATICS

Figure 5: ESP32-WROOM-32D & ESP32-WROOM-32U Peripheral Schematics

<u>т</u>

Note:

Soldering Pad 39 to the Ground is not necessary for a satisfactory thermal performance. If users do want to solder it, they need to ensure that the correct quantity of soldering paste is applied.

- When ESP32 is powered on and off repeatedly by switching the power rails, and there is a large capacitor on the 3V3 rail, a discharge circuit can be added to the 3V3 rail. Please find details in Chapter **Peripheral Schematics**, in <u>ESP32-WROOM-32 Datasheet</u>.
- When battery is used as the power supply for ESP32 series of chips and modules, a supply voltage supervisor is recommended to avoid boot failure due to low voltage. Users are recommended to pull CHIP_PU low if the power supply for ESP32 is below 2.3V. For the reset circuit, please refer to Chapter **Peripheral Schematics**, in <u>ESP32-WROOM-32 Datasheet</u>.

8. Physical Dimensions

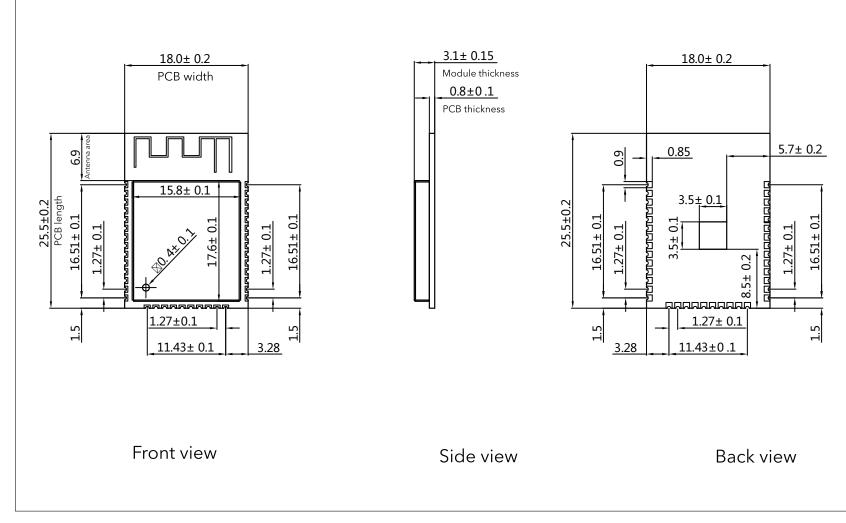
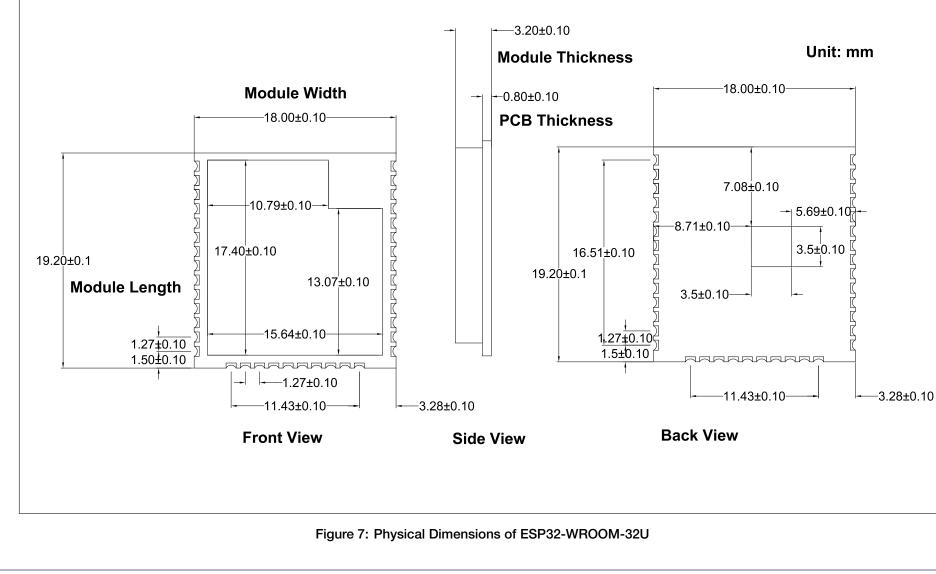



Figure 6: Physical Dimensions of ESP32-WROOM-32D

Espressif Systems

Note:

All dimensions are in millimeters.

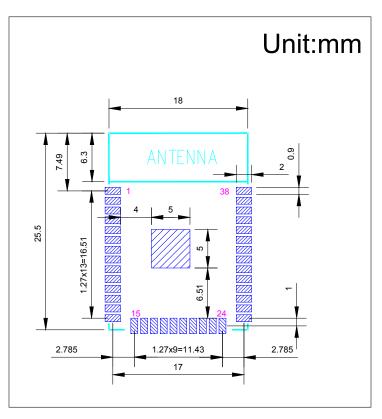


Figure 8: Recommended PCB Land Pattern of ESP32-WROOM-32D

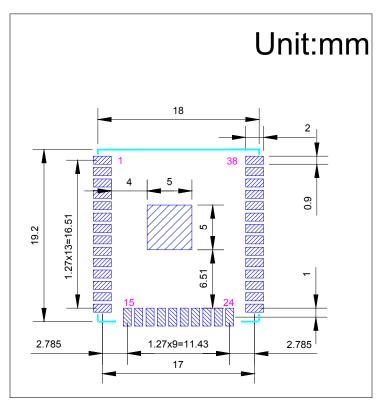


Figure 9: Recommended PCB Land Pattern of ESP32-WROOM-32U

10. U.FL Connector Dimensions

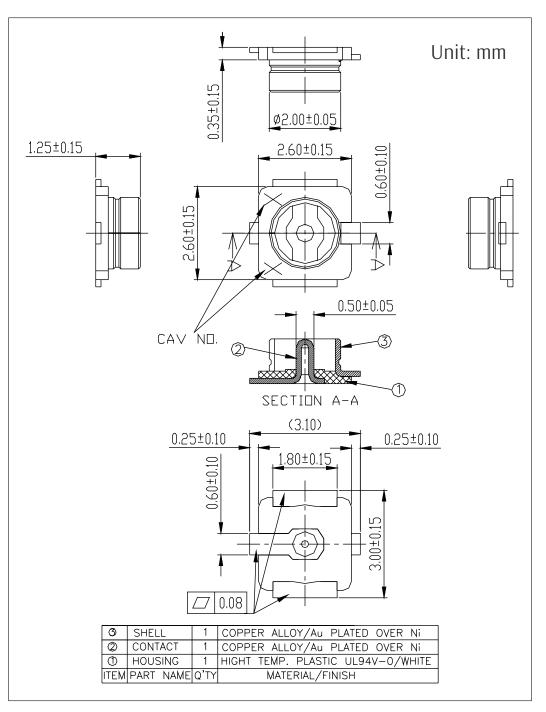


Figure 10: ESP32-WROOM-32U U.FL Dimensions

11. Learning Resources

11.1 Must-Read Documents

The following link provides documents related to ESP32.

ESP32 Datasheet

This document provides an introduction to the specifications of the ESP32 hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc.

- <u>ESP-IDF Programming Guide</u> It hosts extensive documentation for ESP-IDF ranging from hardware guides to API reference.
- <u>ESP32 Technical Reference Manual</u> The manual provides detailed information on how to use the ESP32 memory and peripherals.
- ESP32 Hardware Resources

The zip files include the schematics, PCB layout, Gerber and BOM list of ESP32 modules and development boards.

• ESP32 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32 series of products, including the ESP32 chip, the ESP32 modules and development boards.

• ESP32 AT Instruction Set and Examples

This document introduces the ESP32 AT commands, explains how to use them, and provides examples of several common AT commands.

• Espressif Products Ordering Information

11.2 Must-Have Resources

Here are the ESP32-related must-have resources.

• ESP32 BBS

This is an Engineer-to-Engineer (E2E) Community for ESP32 where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

• ESP32 GitHub

ESP32 development projects are freely distributed under Espressif's MIT license on GitHub. It is established to help developers get started with ESP32 and foster innovation and the growth of general knowledge about the hardware and software surrounding ESP32 devices.

ESP32 Tools

This is a webpage where users can download ESP32 Flash Download Tools and the zip file "ESP32 Certification and Test".

• ESP-IDF

This webpage links users to the official IoT development framework for ESP32.

ESP32 Resources

This webpage provides the links to all available ESP32 documents, SDK and tools.

Revision History

Date	Version	Release notes		
2018.06 V1.4		 Deleted Temperature Sensor in Table 2: ESP32-WROOM-32D & ESP32-WROOM-32U Specifications; Updated Chapter 3: Functional Description; Added notes to Chapter 7: Peripheral Schematics; Added Chapter 9: Recommended PCB Land Pattern; Changes to electrical characteristics: Updated Table 6: Absolute Maximum Ratings; 		
		 Added Table 7: Recommended Operating Conditions; Added Table 8: DC Characteristics; Updated the values of "Gain control step", "Adjacent channel transmit power" in Table 11: Transmitter Characteristics - BLE. 		
2018.04	V1.3	Updated Figure 4 ESP32-WROOM-32U Schematics and Figure 3 ESP32-WROOM- 32D Schematics.		
2018.02	V1.2	Update Figure 4 ESP32-WROOM-32U Schematics.		
2018.02	V1.1	Updated Chapter 6 Schematics. Deleted description of low-noise amplifier. Replaced the module name ESP-WROOM-32D with ESP32-WROOM-32D. Added information about module certification in Table 2. Updated the description of eFuse bits in Section 3.1.		
2017.11	V1.0	First release.		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Espressif:

<u>ESP32-WROOM-32U (16MB)</u> <u>ESP32-WROOM-32U (8MB)</u> <u>ESP32-WROOM-32D (8MB)</u> <u>ESP32-WROOM-32D</u> (16MB) ESP32-WROOM-32D ESP32-WROOM-32U