

LM7332 Dual Rail-to-Rail Input/Output 30V, Wide Voltage Range, High Output Operational Amplifier

Check for Samples: LM7332

FEATURES

- (V_S = ±15V, T_A = 25°C, typical values unless specified.)
- Wide supply voltage range 2.5V to 32V
- Wide input common mode voltage 0.3V beyond rails
- Output short circuit current >100 mA
- High output current (1V from rails) ±70 mA
- GBWP 21 MHz
- Slew rate 15.2 V/µs
- Capacitive load tolerance Unlimited
- Total supply current 2.0 mA
- Temperature range -40°C to +125°C
- Tested at -40°C, +125°C, and 25°C at 5V, ±5V, ±15V

APPLICATIONS

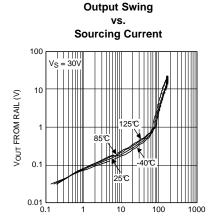
- MOSFET and power transistor driver
- Replaces discrete transistors in high current output circuits
- Instrumentation 4-20 mA current loops
- Analog data transmission
- Multiple voltage power supplies and battery chargers
- · High and low side current sensing
- Bridge and sensor driving
- Digital to analog converter output

DESCRIPTION

The LM7332 is a dual rail-to-rail input and output amplifier with a wide operating temperature range (-40°C to +125°C) which meets the needs of automotive, industrial and power supply applications. The LM7332 has the output current of 100 mA which is higher than that of most monolithic op amps. Circuit designs with high output current requirements often need to use discrete transistors because many op amps have low current output. The LM7332 has enough current output to drive many loads directly, saving the cost and space of the discrete transistors.

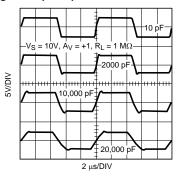
The exceptionally wide operating supply voltage range of 2.5V to 32V alleviates any concerns over functionality under extreme conditions and offers flexibility of use in a multitude of applications. Most of this device's parameters are insensitive to power supply variations; this design enhancement is another step in simplifying usage. Greater than rail-to-rail input common mode voltage range allows operation in many applications, including high side and low side sensing, without exceeding the input range.

The LM7332 can drive unlimited capacitive loads without oscillations.


The LM7332 is offered in the 8-pin MSOP and SOIC packages.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Key Graphs



I_{SOURCE} (mA)

100

1000

Large Signal Step Response for Various Capacitive Loads

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

Aboolate maximum ratings	
ESD Tolerance (2)	
Human Body Model	2 kV
Machine Model	200V
V _{IN} Differential	±10V
Output Short Circuit Duration	
$^{(3)(4)}$ Supply Voltage (V _S = V ⁺ - V ⁻)	35V
Voltage at Input/Output pins	V ⁺ +0.3V, V [−] −0.3V
Storage Temperature Range	−65°C to +150°C
Junction Temperature (5)	+150°C
Soldering Information:	
Infrared or Convection (20 sec.)	235°C
Wave Soldering (10 sec.)	260°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).
- Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
- Short circuit test is a momentary test. Output short circuit duration is infinite for V_S ≤ 6V at room temperature and below. For V_S > 6V, allowable short circuit duration is 1.5 ms.
- The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Operating Ratings

- p - :	
Supply Voltage ($V_S = V^+ - V^-$)	2.5V to 32V
Temperature Range ⁽¹⁾	−40°C to +125°C
Package Thermal Resistance, θ_{JA} , (1)	
8-Pin MSOP	235°C/W
8-Pin SOIC	165°C/W

The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

5V Electrical Characteristics (1)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 0.5V$, $V_O = 2.5V$, and $R_L > 1$ M Ω to 2.5V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (2)	Typ	Max (2)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = 0.5V$ and $V_{CM} = 4.5V$	-4 -5	±1.6	+4 + 5	mV
TC V _{OS}	Input Offset Voltage Temperature Drift	$V_{CM} = 0.5V$ and $V_{CM} = 4.5V$ ±2			μV/°C	
I _B	Input Bias Current	(5) -2.0 ±1.0 +2.0 +2.5 +2.5				
los	Input Offset Current			20	250 300	nA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 3V$	67 65	80		- dB
		$0V \le V_{CM} \le 5V$	62 60	70		иь
PSRR	Power Supply Rejection Ratio	5V ≤ V ⁺ ≤ 30V	78 74	100		dB
CMVR	Input Common Mode Voltage Range	CMRR > 50 dB		-0.3	-0.1 0.0	
			5.1 5.0	5.3		V
A _{VOL}	Large Signal Voltage Gain	$0.5V \le V_0 \le 4.5V$ R _L = 10 k Ω to 2.5V	70 65	77		dB
Vo	Output Swing High	R_L = 10 kΩ to 2.5V V_{ID} = 100 mV		60	150 200	
		$R_L = 2 \text{ k}\Omega \text{ to } 2.5 \text{V}$ $V_{ID} = 100 \text{ mV}$		100	300 350	mV from
	Output Swing Low	$R_L = 10 \text{ k}\Omega \text{ to } 2.5\text{V}$ $V_{ID} = -100 \text{ mV}$		5	150 200	either rail
		$R_L = 2 \text{ k}\Omega \text{ to } 2.5 \text{V}$ $V_{ID} = -100 \text{ mV}$		20	300 350	
I _{SC}	Output Short Circuit Current	Sourcing from V ⁺ , V _{ID} = 200 mV	60	90		
		Sinking to V ⁻ , $V_{ID} = -200 \text{ mV}$	60	90		– mA
I _{OUT}	Output Current	$V_{ID} = \pm 200 \text{ mV}, V_O = 1 \text{V from rails}$		±55		mA
Is	Total Supply Current	No Load, V _{CM} = 0.5V		1.5	2.3 2.6	mA
SR	Slew Rate ⁽⁷⁾	A_V = +1, V_I = 5V Step, R_L = 1 $M\Omega$, C_L = 10 pF		12		V/µs
f _u	Unity Gain Frequency	$R_L = 10 \text{ M}\Omega$, $C_L = 20 \text{ pF}$		7.5		MHz
GBWP	Gain Bandwidth Product	f = 50 kHz		19.3		MHz
e _n	Input Referred Voltage Noise	f = 2 kHz		14.8	_	nV/√Hz
i _n	Input Referred Current Noise	f = 2 kHz		1.35		pA/√Hz

⁽¹⁾ Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J = T_A. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J > T_A.

⁽²⁾ All limits are guaranteed by testing or statistical analysis.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

⁽⁴⁾ Offset voltage temperature drift determined by dividing the change in VOS at temperature extremes into the total temperature change.

⁽⁵⁾ Positive current corresponds to current flowing in the device.

⁽⁶⁾ Short circuit test is a momentary test. Output short circuit duration is infinite for V_S ≤ 6V at room temperature and below. For V_S > 6V, allowable short circuit duration is 1.5 ms.

⁷⁾ Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

5V Electrical Characteristics (1) (continued)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 0.5V$, $V_O = 2.5V$, and $R_L > 1$ M Ω to 2.5V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (2)	Typ (3)	Max (2)	Units
THD+N	Total Harmonic Distortion +Noise	$A_V = +2$, $R_L = 100 \text{ k}\Omega$, $f = 1 \text{ kHz}$, $V_O = 4 \text{ V}_{PP}$		-84		dB
CT Rej.	Crosstalk Rejection	$f = 3 \text{ MHz}$, Driver $R_L = 10 \text{ k}\Omega$		68		dB

±5V Electrical Characteristics (1)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = +5V$, $V^- = -5V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1$ M Ω to 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (2)	Тур (3)	Max (2)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = -4.5V$ and $V_{CM} = 4.5V$	-4 -5	±1.6	+4 +5	mV
TC V _{OS}	Input Offset Voltage Temperature Drift	$V_{CM} = -4.5V$ and $V_{CM} = 4.5V$		±2		μV/°C
l _Β	Input Bias Current	(5)	-2.0 - 2.5	±1.0	+2.0 +2.5	μА
I _{OS}	Input Offset Current			20	250 300	nA
CMRR	Common Mode Rejection Ratio	-5V ≤ V _{CM} ≤ 3V	74 75	88		40
		-5V ≤ V _{CM} ≤ 5V	70 65	74		dB
PSRR	Power Supply Rejection Ration	5V ≤ V ⁺ ≤ 30V, V _{CM} = −4.5V	78 74	100		dB
CMVR	Input Common Mode Voltage Range	CMRR > 50 dB		-5.3	-5.1 -5	.,
			5.1 5.0	5.3		V
A _{VOL}	Large Signal Voltage Gain	$-4V \le V_O \le 4V$ $R_L = 10 \text{ k}\Omega \text{ to } 0V$	72 70	80		dB
V _O	Output Swing High	R_L = 10 kΩ to 0V V_{ID} = 100 mV		75	250 300	
		$R_L = 2 \text{ k}\Omega \text{ to 0V}$ $V_{ID} = 100 \text{ mV}$		125	350 400	mV from
	Output Swing Low	$R_L = 10 \text{ k}\Omega \text{ to 0V}$ $V_{ID} = -100 \text{ mV}$		10	250 300	either rail
		R_L = 2 kΩ to 0V V _{ID} = -100 mV		30	350 400	
I _{SC}	Output Short Circuit Current	Sourcing from V ⁺ , V _{ID} = 200 mV	90	120		
		Sinking to V ⁻ , V _{ID} = −200 mV	90	100		mA mA
I _{OUT}	Output Current	$V_{ID} = \pm 200$ mV, $V_{O} = 1$ V from rails		±65		mA

⁽¹⁾ Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T_J = T_A. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T_J > T_A.

⁽²⁾ All limits are guaranteed by testing or statistical analysis.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

⁽⁴⁾ Offset voltage temperature drift determined by dividing the change in Vos at temperature extremes into the total temperature change.

⁽⁵⁾ Positive current corresponds to current flowing in the device.

⁽⁶⁾ Short circuit test is a momentary test. Output short circuit duration is infinite for V_S ≤ 6V at room temperature and below. For V_S > 6V, allowable short circuit duration is 1.5 ms.

±5V Electrical Characteristics (1) (continued)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = +5V$, $V^- = -5V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1$ M Ω to 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (2)	Typ (3)	Max (2)	Units
I _S	Total Supply Current	No Load, V _{CM} = −4.5V		1.5	2.4 2.6	mA
SR	Slew Rate	A_V = +1, V_I = 8V Step, R_L = 1 $M\Omega$, C_L = 10 pF		13.2		V/µs
R _{OUT}	Close Loop Output Resistance	A _V = +1, f = 100 kHz		3		Ω
f _u	Unity Gain Frequency	$R_L = 10 \text{ M}\Omega, C_L = 20 \text{ pF}$		7.9		MHz
GBWP	Gain Bandwidth Product	f = 50 kHz		19.9		MHz
e _n	Input Referred Voltage Noise	f = 2 kHz		14.7		nV∕√Hz
i _n	Input Referred Current Noise	f = 2 kHz		1.3		pA/√Hz
THD+N	Total Harmonic Distortion +Noise	$A_V = +2$, $R_L = 100 \text{ k}\Omega$, $f = 1 \text{ kHz}$ $V_O = 8 \text{ V}_{PP}$		-87		dB
CT Rej.	Crosstalk Rejection	$f = 3 \text{ MHz}$, Driver $R_L = 10 \text{ k}\Omega$		68		dB

⁽⁷⁾ Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

±15V Electrical Characteristics (1)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = +15V$, $V^- = -15V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1$ M Ω to 0V. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (2)	Typ (3)	Max (2)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = -14.5V$ and $V_{CM} = 14.5V$	-5 -6	±2	+5 +6	mV
TC V _{OS}	Input Offset Voltage Temperature Drift	$V_{CM} = -14.5V$ and $V_{CM} = 14.5V$		±2		μV/°C
l _B	Input Bias Current	(5)	-2.0 - 2.5	±1.0	+2.0 + 2.5	μA
I _{OS}	Input Offset Current			20	250 300	nA
CMRR	Common Mode Rejection Ratio	-15V ≤ V _{CM} ≤ 12V	74 74	88		J.D.
		-15V ≤ V _{CM} ≤ 15V	72 72	80		dB
PSRR	Power Supply Rejection Ratio	$-10V \le V^+ \le 15V$, $V_{CM} = -14.5V$	78 74	100		dB
CMVR	Input Common Mode Voltage Range	CMRR > 50 dB		-15.3	-15.1 -15	.,
			15.1 15	15.3		V
A _{VOL}	Large Signal Voltage Gain	$-14V \le V_O \le 14V$ $R_L = 10 \text{ k}\Omega \text{ to } 0V$	72 70	80		dB

⁽¹⁾ Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under

conditions of internal self-heating where T_J > T_A.

(2) All limits are guaranteed by testing or statistical analysis.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

Offset voltage temperature drift determined by dividing the change in Vos at temperature extremes into the total temperature change.

Positive current corresponds to current flowing in the device.

±15V Electrical Characteristics (1) (continued)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = +15V$, $V^- = -15V$, $V_{CM} = 0V$, $V_O = 0V$, and $R_L > 1 M\Omega$ to 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (2)	Тур (3)	Max (2)	Units
Vo	Output Swing High	$R_L = 10 \text{ k}\Omega \text{ to 0V}$ $V_{ID} = 100 \text{ mV}$		100	350 400	
		$R_L = 2 k\Omega$ to 0V $V_{ID} = 100 \text{ mV}$		200	550 600	mV from
	Output Swing Low	$R_L = 10 \text{ k}\Omega \text{ to 0V}$ $V_{ID} = -100 \text{ mV}$		20	450 500	either rail
		$R_L = 2 k\Omega$ to 0V $V_{ID} = -100 \text{ mV}$		25	550 600	
I _{SC}	Output Short Circuit Current	Sourcing from V ⁺ , V _{ID} = 200 mV		140		A
		Sinking to V^- , $V_{ID} = -200 \text{ mV}$		140		- mA
I _{OUT}	Output Current	V_{ID} = ±200 mV, V_{O} = 1V from rails		±70		mA
I _S	Total Supply Current	No Load, V _{CM} = −14.5V		2.0	2.5 3.0	mA
SR	Slew Rate	$\begin{aligned} &A_V = +1, \ V_I = 20V \ Step, \ R_L = 1 \ M\Omega, \\ &C_L = 10 \ pF \end{aligned}$		15.2		V/µs
f _u	Unity Gain Frequency	$R_L = 10 \text{ M}\Omega$, $C_L = 20 \text{ pF}$		9		MHz
GBWP	Gain Bandwidth Product	f = 50 kHz		21		MHz
e _n	Input Referred Voltage Noise	f = 2 kHz		15.5		nV/√Hz
i _n	Input Referred Current Noise	f = 2 kHz		1		pA/√Hz
THD+N	Total Harmonic Distortion +Noise	$A_V = +2$, $R_L = 100 \text{ k}\Omega$, $f = 1 \text{ kHz}$ $V_O = 25 \text{ V}_{PP}$		-93		dB
CT Rej.	Crosstalk Rejection	$f = 3 \text{ MHz}$, Driver $R_L = 10 \text{ k}\Omega$		68		dB

⁽⁶⁾ Short circuit test is a momentary test. Output short circuit duration is infinite for $V_S \le 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5 ms.

Connection Diagram

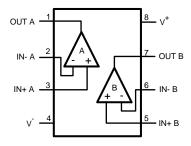
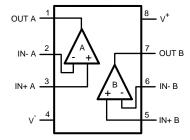
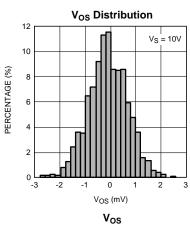
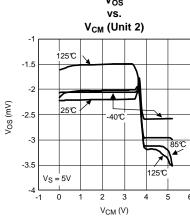
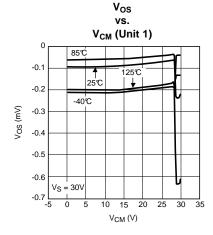


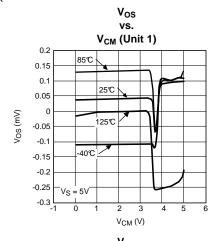
Figure 1. 8-Pin MSOP (Top View)

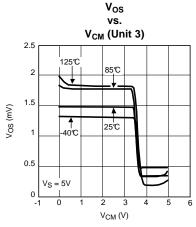


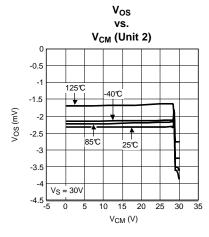

Figure 2. 8-Pin SOIC (Top View)

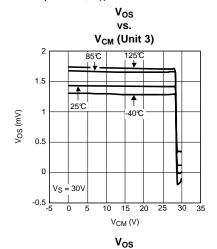

Submit Documentation Feedback

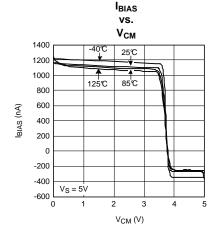

⁽⁷⁾ Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

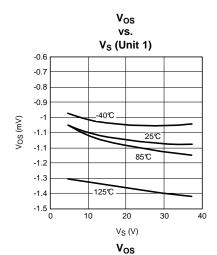


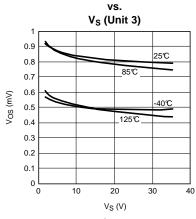

Typical Performance Characteristics

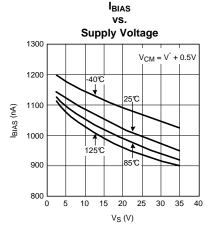


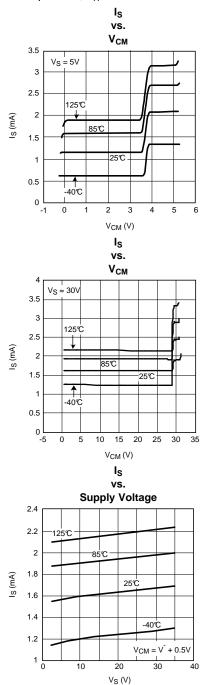


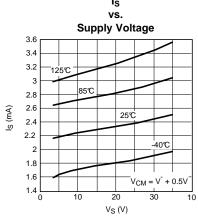


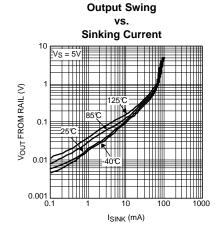

TEXAS INSTRUMENTS


Typical Performance Characteristics (continued)

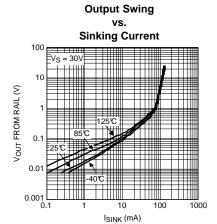


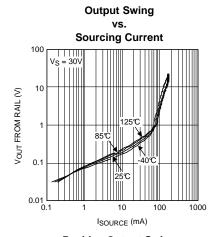


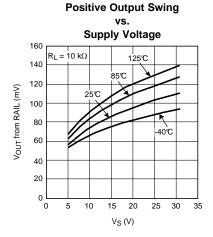


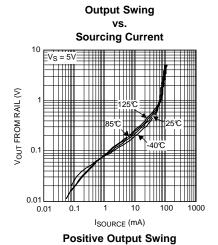


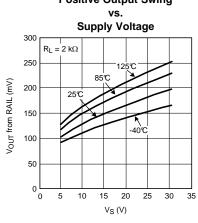
Typical Performance Characteristics (continued)

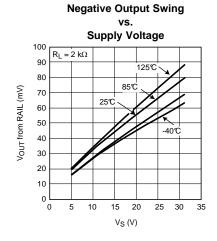


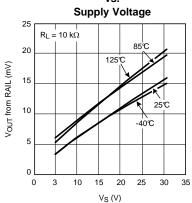


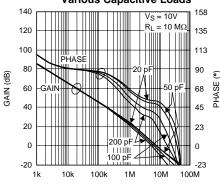




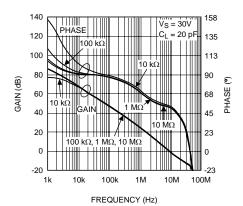

Typical Performance Characteristics (continued)

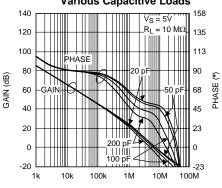




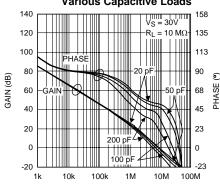

Typical Performance Characteristics (continued)

Unless otherwise specified, $T_A = 25$ °C.

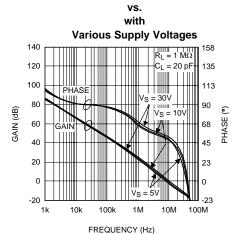

Negative Output Swing vs.


Open Loop Frequency Response with Various Capacitive Loads

FREQUENCY (Hz) Open Loop Frequency Response vs. with Various Resistive Loads



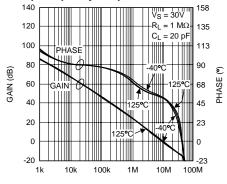
Open Loop Frequency Response with Various Capacitive Loads


FREQUENCY (Hz)

Open Loop Frequency Response with Various Capacitive Loads

FREQUENCY (Hz)

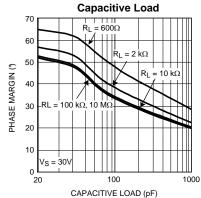
Open Loop Frequency Response



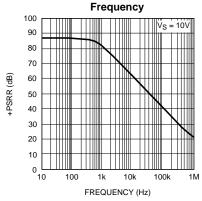
NSTRUMENTS

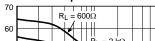
Typical Performance Characteristics (continued)

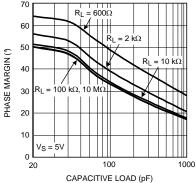
Unless otherwise specified, $T_A = 25$ °C.


Open Loop Frequency Response at Various Temperatures

FREQUENCY (Hz)

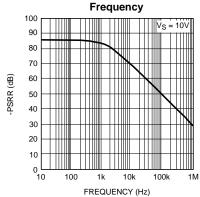

Phase Margin



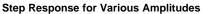

+PSRR

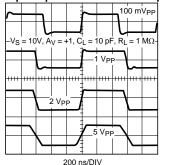
vs.

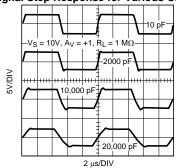



CMRR

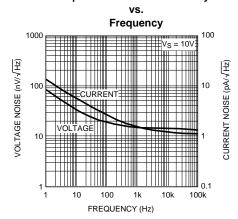
-PSRR

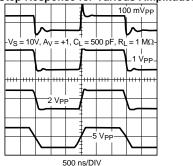

vs.

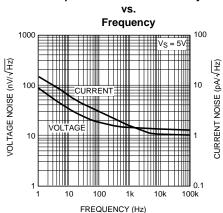


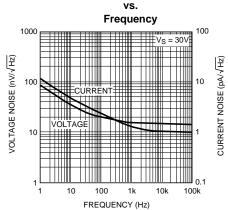

Typical Performance Characteristics (continued)

Unless otherwise specified, $T_A = 25$ °C.

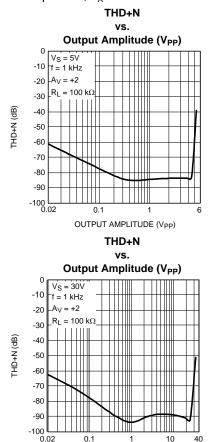



Large Signal Step Response for Various Capacitive Loads

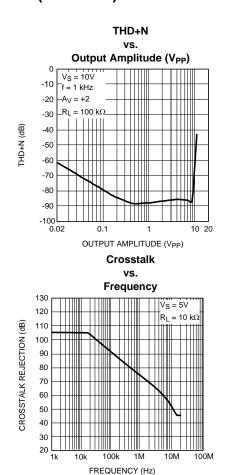

Input Referred Noise Density


Step Response for Various Amplitudes

Input Referred Noise Density



Input Referred Noise Density



Typical Performance Characteristics (continued)

Unless otherwise specified, $T_A = 25$ °C.

OUTPUT AMPLITUDE (VPP)

NSTRUMENTS

Application Information

ADVANTAGES OF THE LM7332

Wide Operating Voltage Range

The LM7332 has an operating voltage from 2.5V to 32V which makes it suitable for industrial and automotive applications.

RRIO with 100 mA Output Current

The LM7332 takes advantages of National Semiconductor's VIP3 process which enables high current driving from the rails. Rail-to-rail output swing provides the maximum possible output dynamic range. The LM7332 eliminates the need to use extra transistors when driving large capacitive loads, therefore reducing the application cost and space.

-40°C to 125°C Operating Temperature Range

The LM7332 has an operating temperature ranging from -40°C to 125°C, which is Automotive Grade 1, and also meets most industrial requirements.

SOIC and MSOP Packages

The LM7332 are offered in both the standard SOIC package and the space saving MSOP package. Please refer to the Physical Dimensions on page 17 for details.

4 Submit Documentation Feedback

Copyright © 2008, Texas Instruments Incorporated

OUTPUT VOLTAGE SWING CLOSE TO V

The LM7332's output stage design allows voltage swings to within millivolts of either supply rail for maximum flexibility and improved useful range. Because of this design architecture, with output approaching either supply rail, the output transistor Collector-Base junction reverse bias will decrease. With output less than a V_{be} from either rail, the corresponding output transistor operates near saturation. In this mode of operation, the transistor will exhibit higher junction capacitance and lower f_t which will reduce phase margin. With the Noise Gain (NG = 1 + R_F/R_G , R_F and R_G are external gain setting resistors) of 2 or higher, there is sufficient phase margin that this reduction in phase margin is of no consequence. However, with lower Noise Gain (<2) and with less than 150 mV to the supply rail, if the output loading is light, the phase margin reduction could result in unwanted oscillations.

In the case of the LM7332, due to inherent architectural specifics, the oscillation occurs only with respect to the output transistor at V $^-$ when output swings to within 150 mV of V $^-$. However, if this output transistor's collector current is larger than its idle value of a few microamps, the phase margin loss becomes insignificant. In this case, 300 μ A is the required output transistor's collector current to remedy this situation. Therefore, when all the aforementioned critical conditions are present at the same time (NG < 2, V_{OUT} < 150 mV from supply rails, & output load is light) it is possible to ensure stability by adding a load resistor to the output to provide the output transistor the necessary minimum collector current (300 μ A).

For 12V (or $\pm 6V$) operation, for example, add a 39 k Ω resistor from the output to V⁺ to cause 300 μ A output sinking current and ensure stability. This is equivalent to about 15% increase in total quiescent power dissipation.

DRIVING CAPACITIVE LOADS

The LM7332 is specifically designed to drive unlimited capacitive loads without oscillations. In addition, the output current handling capability of the device allows for good slewing characteristics even with large capacitive loads as shown in Figure 3. The combination of these features is ideal for applications such as TFT flat panel buffers, A/D converter input amplifiers and power transistor driver.

However, as in most op amps, addition of a series isolation resistor between the op amp and the capacitive load improves the settling and overshoot performance.

Output current drive is an important parameter when driving capacitive loads. This parameter will determine how fast the output voltage can change. Referring to Figure 3, two distinct regions can be identified. Below about 10,000 pF, the output Slew Rate is solely determined by the op amp's compensation capacitor value and available current into that capacitor. Beyond 10 nF, the Slew Rate is determined by the op amp's available output current. An estimate of positive and negative slew rates for loads larger than 100 nF can be made by dividing the short circuit current value by the capacitor.

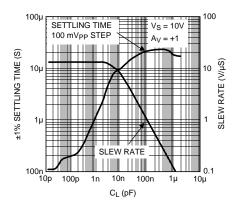


Figure 3. Settling Time and Slew Rate vs. Capacitive Load

TEXAS INSTRUMENTS

ESTIMATING THE OUTPUT VOLTAGE SWING

It is important to keep in mind that the steady state output current will be less than the current available when there is an input overdrive present. For steady state conditions, Figure 4 and Figure 5 plots can be used to predict the output swing. These plots also show several load lines corresponding to loads tied between the output and ground. In each case, the intersection of the device plot at the appropriate temperature with the load line would be the typical output swing possible for that load. For example, a 600Ω load can accommodate an output swing to within 100 mV of V⁻ and to 250 mV of V⁺ (V_S = ±5V) corresponding to a typical 9.65 V_{PP} unclipped swing.

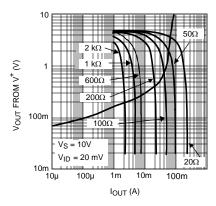


Figure 4. Steady State Output Sourcing Characteristics with Load Lines

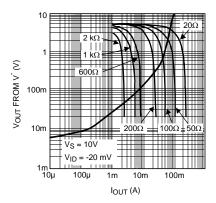


Figure 5. Steady State Output Sinking Characteristics with Load Lines

OUTPUT SHORT CIRCUIT CURRENT AND DISSIPATION ISSUES

The LM7332 output stage is designed for maximum output current capability. Even though momentary output shorts to ground and either supply can be tolerated at all operating voltages, longer lasting short conditions can cause the junction temperature to rise beyond the absolute maximum rating of the device, especially at higher supply voltage conditions. Below supply voltage of 6V, the output short circuit condition can be tolerated indefinitely.

Submit Documentation Feedback

With the op amp tied to a load, the device power dissipation consists of the quiescent power due to the supply current flow into the device, in addition to power dissipation due to the load current. The load portion of the power itself could include an average value (due to a DC load current) and an AC component. DC load current would flow if there is an output voltage offset, or the output AC average current is non-zero, or if the op amp operates in a single supply application where the output is maintained somewhere in the range of linear operation. Therefore:

$P_{TOTAL} = P_{Q} + P_{DC} + P_{AC}$	
$P_Q = I_S \cdot V_S$	Op Amp Quiescent Power Dissipation
$P_{DC} = I_{O} \cdot (V_{r} - V_{o})$	DC Load Power
P _{AC} = See Table 1 below	AC Load Power

where:

Is: Supply Current

V_S: Total Supply Voltage (V⁺ – V⁻)

V_O: Average Output Voltage

V_r: V⁺ for sourcing and V⁻ for sinking current

Table 1 below shows the maximum AC component of the load power dissipated by the op amp for standard Sinusoidal, Triangular, and Square Waveforms:

Table 1. Normalized AC Power Dissipated in the Output Stage for Standard Waveforms

P _{AC} (W.Ω/V²)						
Sinusoidal	Triangular	Square				
50.7 x 10 ⁻³	46.9 x 10 ⁻³	62.5 x 10 ⁻³				

The table entries are normalized to V_S^2/R_L . To figure out the AC load current component of power dissipation, simply multiply the table entry corresponding to the output waveform by the factor V_S^2/R_L . For example, with $\pm 12V$ supplies, a 600Ω load, and triangular waveform power dissipation in the output stage is calculated as:

$$P_{AC} = (46.9 \times 10^{-3}) \cdot [24^2/600] = 45.0 \text{ mW}$$
 (1)

The maximum power dissipation allowed at a certain temperature is a function of maximum die junction temperature $(T_{J(MAX)})$ allowed, ambient temperature T_A , and package thermal resistance from junction to ambient, θ_{JA} .

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$
 (2)

For the LM7332, the maximum junction temperature allowed is 150°C at which no power dissipation is allowed. The power capability at 25°C is given by the following calculations:

For MSOP package:

$$P_{D(MAX)} = \frac{150 \,\text{C} - 25 \,\text{C}}{235 \,\text{C/W}} = 0.53 \text{W}$$
 (3)

For SOIC package:

$$P_{D(MAX)} = \frac{150 \,\text{C} - 25 \,\text{C}}{165 \,\text{C/W}} = 0.76 \text{W} \tag{4}$$

Similarly, the power capability at 125°C is given by:

For MSOP package:

$$P_{D(MAX)} = \frac{150 \text{°C} - 125 \text{°C}}{235 \text{°C/W}} = 0.11 \text{W}$$
 (5)

For SOIC package:

$$P_{D(MAX)} = \frac{150 \text{°C} - 125 \text{°C}}{165 \text{°C/W}} = 0.15 \text{W}$$
 (6)

TEXAS INSTRUMENTS

Figure 6 shows the power capability vs. temperature for MSOP and SOIC packages. The area under the maximum thermal capability line is the operating area for the device. When the device works in the operating area where P_{TOTAL} is less than $P_{D(MAX)}$, the device junction temperature will remain below 150°C. If the intersection of ambient temperature and package power is above the maximum thermal capability line, the junction temperature will exceed 150°C and this should be strictly prohibited.

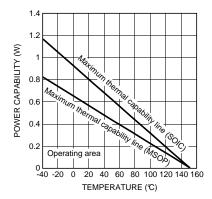


Figure 6. Power Capability vs. Temperature

When high power is required and ambient temperature can't be reduced, providing air flow is an effective approach to reduce thermal resistance therefore to improve power capability.

APPLICATION HINTS ON SUPPLY DECOUPLING

The use of supply decoupling is mandatory in most applications. As with most relatively high speed/high output current op amps, best results are achieved when each supply line is decoupled with two capacitors; a small value ceramic capacitor ($\sim 0.01~\mu F$) placed very close to the supply lead in addition to a large value Tantalum or Aluminum capacitor ($> 4.7~\mu F$). The large capacitor can be shared by more than one device if necessary. The small ceramic capacitor maintains low supply impedance at high frequencies while the large capacitor will act as the charge "bucket" for fast load current spikes at the op amp output. The combination of these capacitors will provide supply decoupling and will help keep the op amp oscillation free under any load.

SIMILAR HIGH CURRENT OUTPUT DEVICES

The LM6172 has a higher GBW of 100 MHz and over 80 mA of current output. There is also a single version, the LM6171. The LM7372 has 120 MHz of GBW and 150 mA of current output. The LM7372 is available in a small pin LLP package, an 8-pin PSOP, and 16-pin SOIC packages with higher power dissipation.

The LME49600 buffer has 250 mA of current out and a 110 MHz bandwidth. The LME49600 is available in a TO-263 package for higher power dissipation.

The LM7322 is a rail-to-rail input and output part with a slightly higher GBW of 20 MHz. It has current capability of 40 mA sourcing and 65 mA sinking, and can drive unlimited capacitive loads. The LM7322 is available in both MSOP and SOIC packages.

Detailed information on these parts can be found at www.national.com.

Submit Documentation Feedback

17-Nov-2012

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish		Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
LM7332MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM7332MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM7332MM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM7332MME/NOPB	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM7332MMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

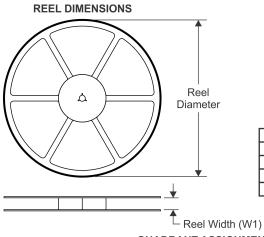
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

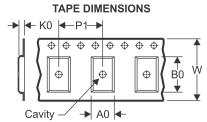
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

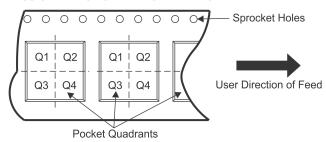
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



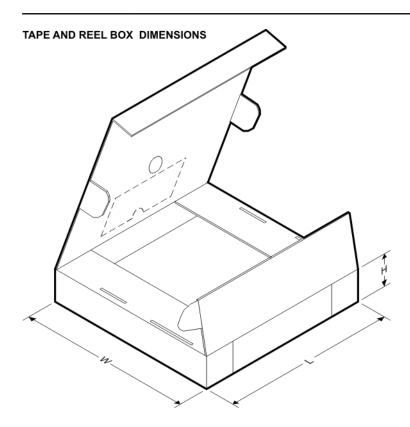

17-Nov-2012

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Nov-2012


TAPE AND REEL INFORMATION

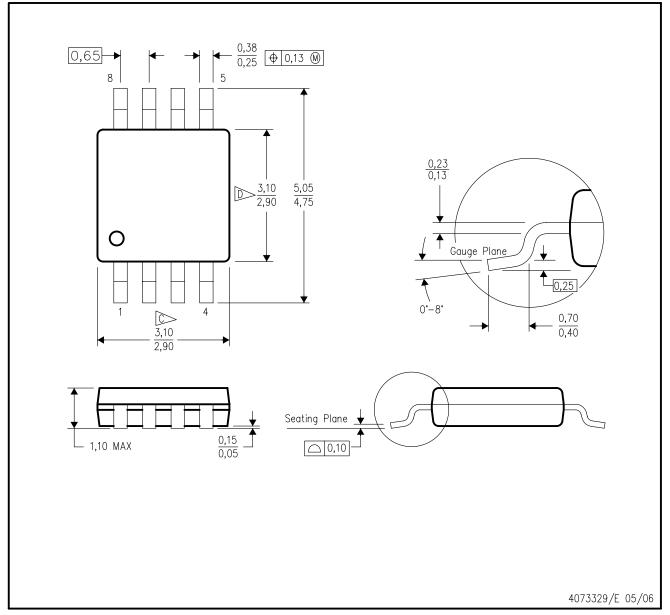
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM7332MAX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LM7332MM/NOPB	VSSOP	DGK	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM7332MME/NOPB	VSSOP	DGK	8	250	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM7332MMX/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 17-Nov-2012

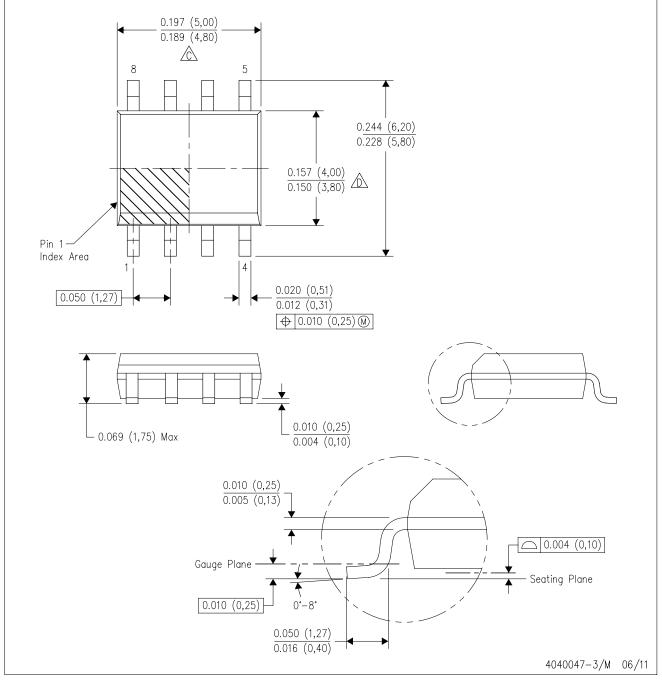


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM7332MAX/NOPB	SOIC	D	8	2500	349.0	337.0	45.0
LM7332MM/NOPB	VSSOP	DGK	8	1000	203.0	190.0	41.0
LM7332MME/NOPB	VSSOP	DGK	8	250	203.0	190.0	41.0
LM7332MMX/NOPB	VSSOP	DGK	8	3500	349.0	337.0	45.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>