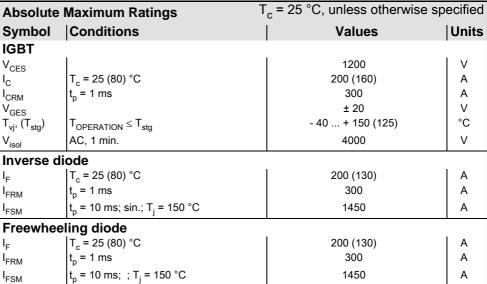
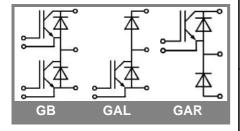
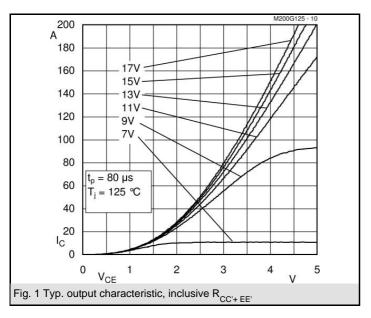


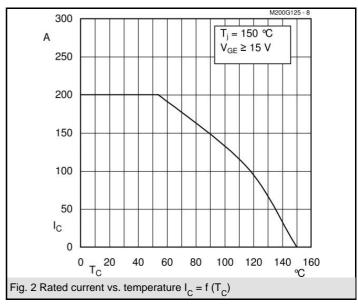
Ultra Fast IGBT Modules

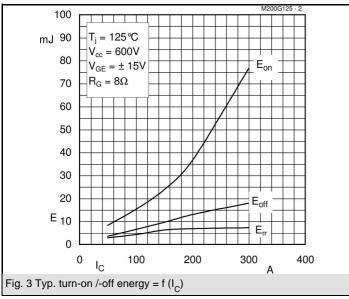

SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**

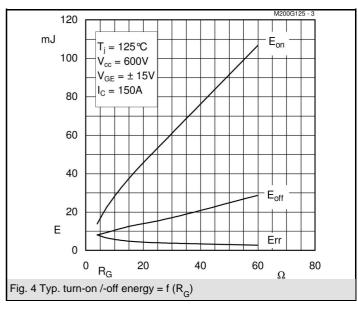
Features

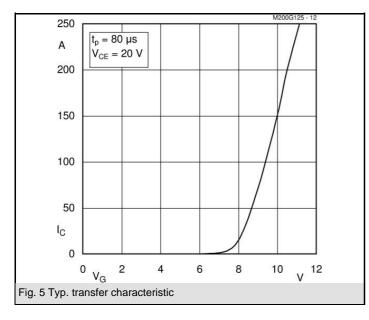

- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- · Large clearance (13 mm) and creepage distance (20 mm)

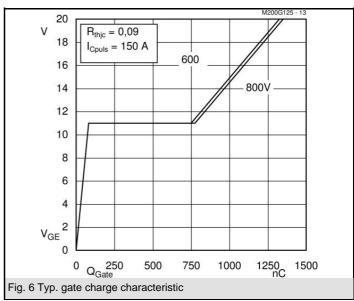

Typical Applications

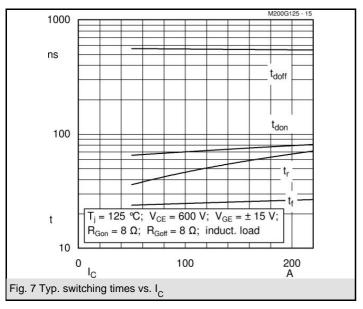

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

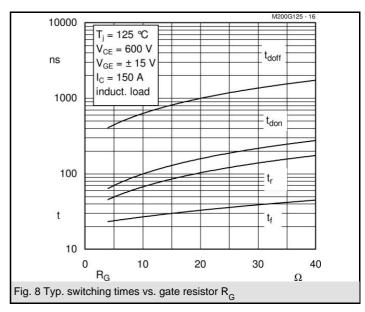


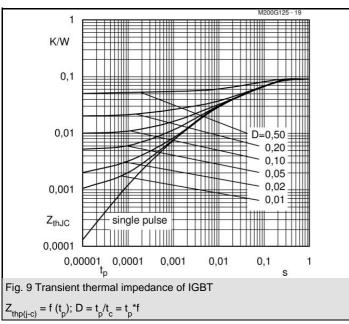

Character	ristics	Γ _c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 6 \text{ mA}$	4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,15	0,45	mA
V _{CE(TO)}	T _j = 25 (125) °C		1,5	1,75	V
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		12	14	mΩ
V _{CE(sat)}	I_{Cnom} = 150 A, V_{GE} = 15 V, chip level		3,3	3,85	V
C _{ies}	under following conditions		10	13	nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,5	2	nF
C _{res}			0,8	1,2	nF
L _{CE}				20	nH
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 150 A		75		ns
t _r	$R_{Gon} = R_{Goff} = 4 \Omega$, $T_j = 125 °C$		36		ns
t _{d(off)}	V _{GE} = ± 15 V		420		ns
t _f			25		ns
E _{on} (E _{off})			14 (8)		mJ
Inverse d	 	·			
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V; T_j = 25 (125) $^{\circ}$ C		2 (1,8)	2,5	V
V _(TO)	T _i = 25 (125) °C		1,1	1,2	V
r _T	$T_j = 25 (125) ^{\circ}C$		6	8,7	mΩ
I _{RRM}	I _{Fnom} = 150 A; T _j = 125 () °C		230		Α
Q_{rr}	di/dt = 5500 A/µs		24		μC
E _{rr}	V _{GE} = 0 V		6,3		mJ
FWD					
$V_F = V_{EC}$	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V
$V_{(TO)}$	$T_j = 25 (125) ^{\circ}C$		1,1	1,2	V
r _T	$T_j = 25 (125) ^{\circ}C$		6	8,7	mΩ
I _{RRM}	I _F = 150 A; T _j = 125 () °C		230		A
Q _{rr}	di/dt = 5500 A/μs		24		μC
E _{rr}	V _{GE} = 0 V		6,3		mJ
	characteristics	i		•	1
R _{th(j-c)}	per IGBT			0,09	K/W
R _{th(j-c)D}	per Inverse Diode			0,25	K/W
R _{th(j-c)FD}	per FWD			0,25	K/W
R _{th(c-s)}	per module			0,038	K/W
Mechanic	•	1 -		_	ļ., J
M _s	to heatsink M6	3		5	Nm
M _t	to terminals M6	2,5		5	Nm
W				325	g

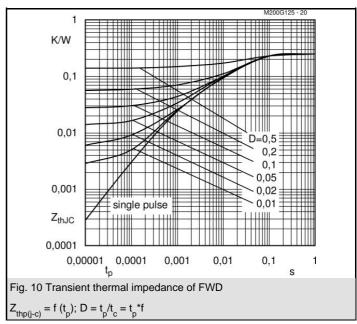


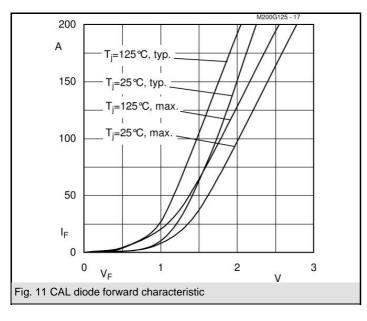


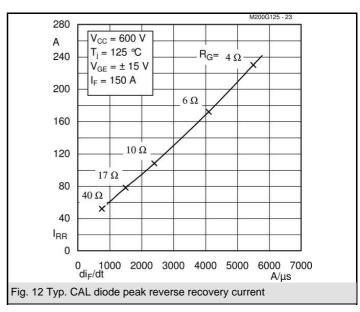


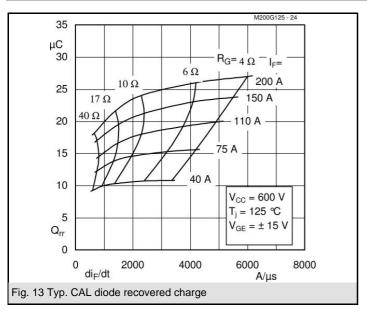


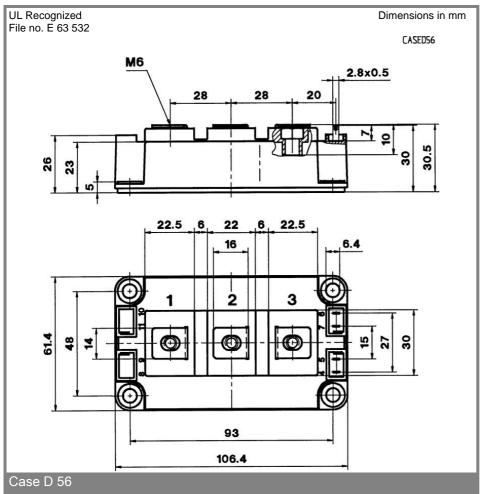


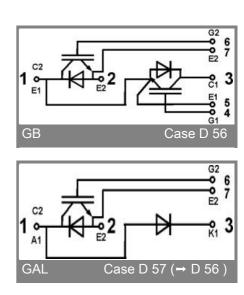


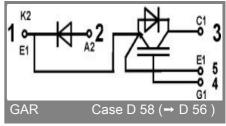












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.