Features:

- Wireless LED driver with integrated EnOcean module

- Output current level selectable by DIP S.W.
- 180~295VAC input only
- Built-in active PFC function
- Protections: Short circuit / Over voltage / Over temperature
- Cooling by free air convection
- Class II power unit, no FG
- Built-in $0 \sim 10 \mathrm{Vdc}$ or PWM signal or resistance dimming function(NTC is not used)
- Fully isolated plastic case
- IP20 design
- Temperature compensation function by external NTC
- Power supplies synchronization function up to 10 units
- Suitable for indoor LED lighting applications
- 3 years warranty

LRN Button \qquad \square Antenna

※ T case: Max. Case Temperature.

Bottom View

Terminal Pin No. Assignment(TB1)

Pin No.	Assignment
1	AC/L
2	AC / N

Terminal Pin No. Assignment(TB3)

Pin No.	Assignment
1	+NTC
2	-NTC

Terminal Pin No. Assignment(TB5)

Pin No.	Assignment
1	$+V_{0}$
2	$-V_{0}$

SYN. or DC 0-10V Dimming
Connector(CN101/CN100):JST B2B-XH or equivalent

Pin No.	Assignment	Mating Housing	Terminal
1,3	+	JST XHP or equivalent	JST SXH-001T-P0.6 or equivalent
2,4	-		

PFC fosc : 60 KHz PWM fosc : 80KHz

Derating Curve

■ DIP Switch Table

LCM-40EO is a multiple-stage output current supply, selection of output current through DIP switch as table below.

10	DIP S.W.	1	2	3	4	5
6						
350 mA	----	----	----	---	----	----
500 mA	ON	----	----	----	----	----
600 mA	ON	ON	----	---	----	----
700 mA (Factory Setting)	ON	ON	ON	---	----	ON
900 mA	ON	ON	ON	ON	----	ON
1050 mA	ON	ON	ON	ON	ON	ON

Power Factor Characteristic

- EFFICIENCY vs LOAD

LCM-40EO series possess superior working efficiency that up to 91% can be reached in field applications.

Interoperable products / EnOcean Equipment Profile(EEP)

Support Equipmenrt	Telegram
Rocker Pad Switch	F6-02-02
Occupancy Sensor	A5-07-01
Occupancy Sensor	A5-07-02
Occupancy Sensor	A5-07-03
Light Level Sensor	A5-06-02
Light Level Sensor	A5-06-03
Central Controller	A5-38-08
Demand Response	A5-37-01

Batteryless wireless switch supplier

MW order code:WPD-06SWT. There are many other switch supplier listed in the below.

WPD-06SWT

Manufacturer	Model *
Legrand	0784 42
Siemens	5WG4222-3AB10
Berker	24121009
Jung	ENO A 595
Busch-jaeger	EASYSENS/ ENOCEAN
Gira	242203
Peha	D 455/61.022 FU-BLS N
Eltako	F4T65
VIMAR	20505+20506.B+21507.B

*: The model list is provided for reference. For more information please contact original supplier

SYNCHRONIZATION OPERATION

- 10 drivers(max.) synchronization (1 master +9 slaves)
- Maximum cable length between each units : 20 meter.

NOTE: Please make sure all units are set to 100% dimming setting(factory default) before synchronizing. Salve model could be LCM-40EO or LCM-40(economy).

■ TEMPERATURE COMPENSATION OPERATION

LCM-40EO have the built-in temperature compensation function ($\mathrm{T} \uparrow$, lo \downarrow). By connecting a temperature sensor (NTC resistor) between the NTC $+/-$ terminal of LCM-40EO and the detecting point on the lighting system or the surrounding environment, output current of LCM-40EO could be correspondingly changed to ensure the long life of LED.
1.LCM-40EO can still be operated well when the NTC resistor is not connected and the value of output current will be the current level that you set through the DIP switch.
2.

NTC resistance	Output Current
220 K	$<60^{\circ} \mathrm{C}, 100 \%$ of the rated current (corresponds to the setting current level)
$>60^{\circ} \mathrm{C}$, output current begin to reduce, details please refer to the curve.	

>70^{\circ} \mathrm{C}, output current begin to reduce, details please refer to the curve.\end{array}\right]\)

Notes: 1. MW does not offer the NTC resistor and all the data above are measured by using THINKING TTC03 series.
2. If other brands of NTC resistor is applied, please check the temperature curve first.
3. Synchronization function of the power supply will be invalid when the "temperature compensation" function is in use.

■ LRN button description

LRN (Learn) Button:
Shortly press (around 1 second) the button to enter linking (pairing) / unlinking mode.
The LED lamp connected at the output of LCM starts toggling between 10% and 90% indicating that linking mode is active. Once activated, this mode stays temporary active to provide time to link or unlink multiple switches. The mode will stop and back to normal mode after 30 seconds if no wireless telegram from switch is received.

For the switch to be linked, click the "I" button (top button marked on the switch plastic or "l" symbol on the back of the switch 4 times quickly. In case the output of LCM is continuous 100% for 4 seconds, it mean the switch is linked successfully.

LCM-40/60EO is now ready to accept new links on another switch.
In case a linked switch to be unlinked, please use the same action as described from the linking method above.
To exit linking / unlinking mode and return to normal operation, wait 30s without doing anything or shortly press the button again.
In order to clear all linked switches and reset the LCM-40/60EO to factory settings, please press and hold the button for 10 seconds.

Installation \& Pairing

Hareware connection:

1. Connect the LED lamp to the LCM.
2. Connect the LCM-40EO to the AC mains.

There are two approaches for linking(pairing):

1. Using the LRN button on the LCM-40/60EO

The instruction is in the LRN button description.
2. Using the NAVIGAN wireless software

Benefit to use NAVIGAN is more dimming parameters can be configured.
The software can be download in the website link below.
http://www.navigan.com/
After the software installation, insert the USB300 into one of USB port from the computer.
For more details, please check the manual.

World Coverage Map

COUNTRY/REGION	STANDARD	FREQUENCY
Aruba	Possibly R\&TTE Directive	868 MHz - Confirm with test house
Australia / New Zealand	N.A.	
Barbados	N.A.	Note1
Bermuda	N.A.	Note1
Bolivia	N.A.	Note1
Brazil	ANATEL	868 MHz
British Virgin Islands	N.A.	Note1
Cayman Islands	Possibly R\&TTE Directive	868 MHz
CEPT (European regional)*	EN 300220	868 MHz
Chile	Possibly R\&TTE Directive	868 MHz
China	CNAS/MIIT EN 300220	868 MHz
Colombia	Possibly ANATEL	868 MHz
Ecuador	N.A.	Note1
El Salvador	Possibly R\&TTE Directive	868 MHz
French Guiana	ETSI EN 300220	868 MHz
Guatemala	N.A.	Note1
Hong Kong	Possibly 315MHz	Note1
India	Possibly 315MHz	Note1
Israel	Possibly 315 MHz	Note1
Jamaica	N.A.	Note1
Japan 920**	ARIB STD-T108	928MHz
Malaysia	SKMM WTS SRD/EN 300220	868 MHz
Mexico	We believe Mexico does not accept FCC	868 MHz
Nicaragua	N.A.	Note1
Peru	N.A.	Note1
Panama	FCC CFR47 Part 15.249	902 MHz
Russia	N.A.	
Singapore	TS SRD/EN 300220	868 MHz
South Africa	ICASA/EN 300220	868 MHz
South Korea	N.A.	
Suriname	N.A.	Note1
Taiwan	Possibly 315MHz	Note1
Trinidad \& Tabago	N.A.	Note1
Turks \& Caicos Islands	Possibly R\&TTE Directive	868 MHz
UAE	EN 300220	868 MHz
Uruguay	N.A.	Note1
USA/Canada	FCC CFR47 Part 15.249	315MHz, 902 MHz

Note1: It is suggested to check with local accredited certification agency.
*CEPT is the European regional organization dealing with postal and telecommunications issues and presently has 45 Members: Albania, Andorra, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Moldova, Monaco, Netherlands, Norway, Poland, Portugal, Romania, Russian Federation, San Marino, Serbia and Montenegro, Slovakia, Slovenia, Spain, Sweden, Switzerland, The former Yugoslav Republic of Macedonia, Turkey, Ukraine, United Kingdom, and Vatican.
**In February 2012, Japanese regulatory body ARIB (Association of Radio Industries and Businesses) released new 920 MHz frequency band for radio equipment, due to LTE rollout. The 950 MHz frequency band will be obsolete by end of 2015 .

3 in 1 DIMMING OPERATION

※ Built-in 3 in 1 dimming function, output constant current level can be adjusted through output terminal by connecting a resistance or $0 \sim 10 \mathrm{Vdc}$ or 10 V PWM signal between SYN+ and SYN-.
※ Please DO NOT connect "SYN-" to "-Vo".
※ Reference resistance value for output current adjustment (Typical)

Resistance value	Single driver	Short	$10 \mathrm{~K} \Omega$	$20 \mathrm{~K} \Omega$	$30 \mathrm{~K} \Omega$	$40 \mathrm{~K} \Omega$	$50 \mathrm{~K} \Omega$	$60 \mathrm{~K} \Omega$	$70 \mathrm{~K} \Omega$	$80 \mathrm{~K} \Omega$	$90 \mathrm{~K} \Omega$	$100 \mathrm{~K} \Omega$	OPEN
	Multiple drivers N=driveruantity for synchronized dimming operation)	Short	$10 \mathrm{~K} \Omega / \mathrm{N}$	$20 \mathrm{~K} \Omega / \mathrm{N}$	30 K ת/N	$40 \mathrm{~K} \Omega / \mathrm{N}$	$50 \mathrm{~K} \Omega / \mathrm{N}$	$60 \mathrm{~K} \Omega / \mathrm{N}$	$70 \mathrm{~K} \Omega / \mathrm{N}$	$80 \mathrm{~K} \Omega / \mathrm{N}$	$90 \mathrm{~K} \Omega / \mathrm{N}$	$100 \mathrm{~K} \Omega / \mathrm{N}$	-----
Percentage of rated current		0\%	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%	100\%	100\% 108%

※ $0 \sim 10 \mathrm{~V}$ dimming function for output current adjustment (Typical)

Dimming value	0 V	1 V	2 V	3 V	4 V	5 V	6 V	7 V	8 V	9 V	10 V	0 OPEN
Output current	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	$100 \% \sim 108 \%$

※ 10V PWM signal for output current adjustment (Typical): Frequency range : $100 \mathrm{~Hz} \sim 3 \mathrm{KHz}$

Duty value	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	OPEN
Output current	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	$100 \% \sim 108 \%$

(0) Dimming Characteristic

