WINSTAR Display

OLED SPECIFICATION

Model No:

WEP012832NWPP3D00000

APPROVAL	FOR	SPECIFIC	CATIONS	ONI Y
	I OIV			

RELEASE DATE:

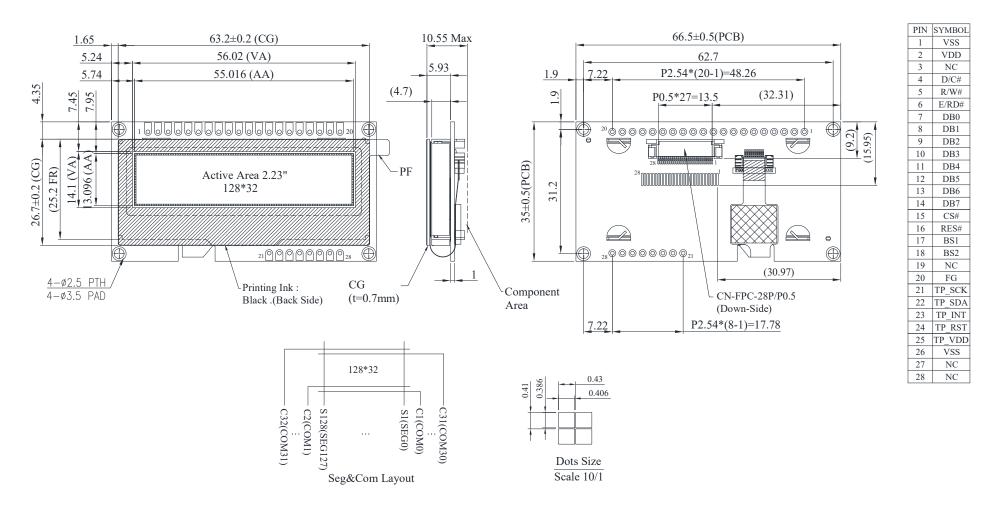
_APPROVAL FOR SPECIFICATIONS AND SAMPLE

MODEL NO:					
REC	ORDS OF REV		DOC. FIRST ISSUE		
VERSION	DATE	REVISED PAGE NO.	SUMMARY		
0	2024/11/07		First release		

Contents

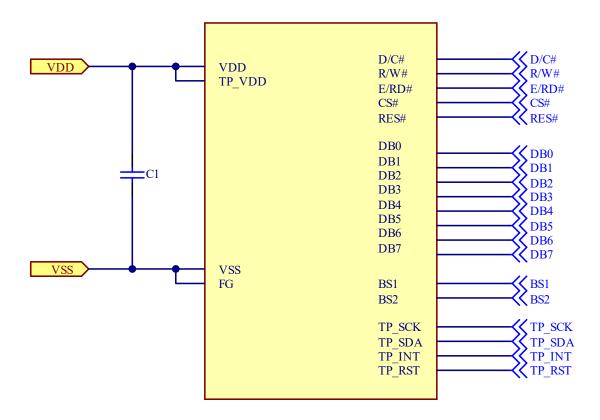
- 1. Module Classification Information
- 2.General Specification
- 3. Contour Drawing & Block Diagram
- 4.Interface Pin Function
- 5. Absolute Maximum Ratings
- 6. Electrical Characteristics
- 7. Optical Characteristics
- 8.OLED Lifetime
- 9.Reliability
- 10.Inspection specification
- 11. Precautions in use of OLED Modules

1.Module Classification Information


1	Brand: WINSTAR DISPLAY CORPORATION				
2	E: OLED				
	H : COB Character		G: COB Graphic		
	Discussion Tons	O: COG	F: COG+FR		
3	Display Type	P: COG + FR + PCB	X : COF		
		A: COG + PCB	N: COF + FR + PCB		
4	Dot Matrix: 12	28 * 32			
5	Serials code				
		A: Amber	R : Red	C : Full Color	
	F ''' O I	B: Blue	W: White		
6	6 Emitting Color	G: Green	L: Yellow		
		S: Sky Blue	X : Dual Color		
7	Polarizer	P:With Polarizer; A:Anti-glare Polar	N: Without Polarizer izer		
8	Display Mode	P : Passive Matrix	; N:Active Matrix		
9	Driver Voltage	3:3.0~3.3V ; 5	: 5.0V		
10	Touch Panel N : Without touch p		panel ; T:Resistive TP; [D : CTP (Air bonding)	
11	Product type 0 : Standard				
12	Inspection Grade 0 : Standard				
13	Option 0 : Default				
14	Serial No.	Serial number(00~9	99)		

2.General Specification

Item	Dimension	Unit		
Dot Matrix	128 x 32 Dots			
Module dimension	66.5 × 35.0 ×10.55 (Max)	mm		
Active Area	55.016 × 13.096	mm		
Pixel Size	0.406 × 0.386	mm		
Pixel Pitch	0.43 × 0.41	mm		
Display Mode	Passive Matrix			
Display Color	White			
Drive Duty	1/32 Duty			
OLED IC	SH1106			
OLED Interface	6800,8080,4-Wire SPI,I2C			
Size	2.23 inch			


CTP IC	FT6336U
Detect Point	1
CTP Interface	I2C
Surface	Normal Glare

3. Contour Drawing & Block Diagram

The non-specified tolerance of dimension is $\pm 0.3\ mm$.

3.1 Application recommendations

Recommended components:

C1: 4.7uF

OLED Bus Interface selection: (Must be set the BS[2:1], refer to item 4)
 8-bits 6800 and 8080 parallel, 4-Wire SPI, I2C

2. Touch Panel of Bus Interface: I2C

Note:

- (1). The capacitor value is recommended value. Select appropriate value against module application.
- (2). I2C Mode: Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

4.Interface Pin Function

No.	Symbol			Func	tion			
1	VSS	Ground.	Ground.					
2	VDD	Power su	pply input.					
3	NC	No conne	ection.					
4	D/C#	data or a D/C = "H" D/C = "L"	command. ': the inputs at DI : the inputs at DE erface, this pad s	B0 to DB7 are tr B0 to DB7 are tr	eated as	display	ether the data bits are data. command registers. different address of	
5	R/W#	When cor 8080 MPI of the WF When cor terminal.	This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input erminal. When R/W = "H": Read.					
6	E/RD#	When cor to the RD when this When cor enable clo	This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RD signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. When RD = "H": Enable.					
7~14	DB0~DB7	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the I2C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDAI). At this time, D2 to D7 are set to high impedance.						
15	CS#	This pad is the chip select input. When CS = "L", then the chip select becomes active, and data/command I/O is enabled.						
16	RES#	This is a reset signal input pad. When RES is set to "L", the settings are initialized. The reset operation is performed by the RES signal level.						
17	DC4	These are the MPU interface mode select pads.						
17	BS1		68XX-parallel	80XX-parallel	Serial	I2C		
4.0	D 00	BS1	0	1	0	1		
18	BS2	BS2	1	1	0	0		

19	NC	No connection.
20	FG	Ground.
21	TP_SCK	I2C Clock
22	TP_SDA	I2C Data
23	TP_INT	Interrupt Output This pin is used as the dedicated interrupt output signal.
24	TP_RST	Hardware Reset This pin is to reset hardware for this chip.
25	TP_VDD	Power supply pin for only touch panel (3.3V).
26	VSS	Ground.
27~28	NC	No connection.

5.Absolute Maximum Ratings

5.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage For Logic	VDD-VSS	-0.3	3.6	V	1,2
Operating Temperature	TOP	-20	+70	°C	_
Storage Temperature	TSTG	-40	+85	°C	_

Note:

- 1. All the above voltages are on the basis of "VSS = 0V".
- 2. When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 6. "Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.
- 3. The absolute limit temperature was verified according to the test conditions of reliability test (See section 9. Reliability), and module was met all criteria.
- 4. The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be 80 °C.

5.2 Touch Panel Controller FT6336U

Parameter	Symbol	Min	Max	Unit	Notes
Power Supply Voltage	VDD	-0.3	3.6	V	1

Note 1: If used beyond the absolute maximum ratings, CTP IC may be permanently damaged. It is strongly recommended that the device be used within the electrical characteristics in normal operations. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.

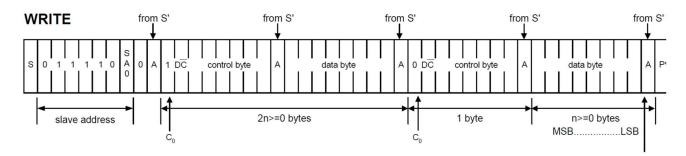
6.Electrical Characteristics

6.1 DC Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage for Logic	VDD	_	2.9	3.3	3.5	٧
Input High Volt.	VIH	_	0.8XVDD	_	VDD	V
Input Low Volt.	VIL	_	VSS	_	0.2xVDD	V
Output High Volt.	VOH	_	0.8xVDD	_	VDD	V
Output Low Volt.	VOL	_	VSS	_	0.2xVDD	V
Display 50% Pixel On	IDD	VDD=3.3V	_	85	128	mA

6.2 Touch Panel Controller FT6336U

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage	VDD	_	2.8	3.0	3.3	V
Input High Volt.	VIH	_	0.7xVDD	_	VDD	V
Input Low Volt.	VIL	_	-0.3	_	0.3xVDD	V
Output High Volt.	VOH	Iон = -0.1mA	0.7xVDD	_	_	V
Output Low Volt.	VOL	Iон = 0.1mA	_	_	0.3xVDD	V


6.3 OLED DISPLAY's Initial code

```
void INIT SH1106(){
    WriteCommand(0xAE);
                             //display off
    WriteCommand(0xB0);
                             //set page address
                             //set higher column address
    WriteCommand(0x10):
    WriteCommand(0x04);
                             //set lower column address
    WriteCommand(0xA4);
                             //set entire display off
    WriteCommand(0xD5);
                             //set display clock divide ratio/oscillator frequency
    WriteCommand(0x50);
    WriteCommand(0xA8):
                             //set multiplex ration
    WriteCommand(0x1F);
    WriteCommand(0xD3);
                             //set display offset
    WriteCommand(0x00);
    WriteCommand(0x40);
                             //set display start line
                             //set DC-DC
    WriteCommand(0xAD);
    WriteCommand(0x8A);
    WriteCommand(0xA1);
                             //set segment re-map
                             //set common output scan direction
    WriteCommand(0xC8);
                             //set common pads hardware configuration
    WriteCommand(0xDA);
    WriteCommand(0x12);
    WriteCommand(0x81);
                             //set contrast control register
    WriteCommand(0x6F);
    WriteCommand(0xD9);
                             //set dis-charge/pre-charge period
    WriteCommand(0x11);
    WriteCommand(0xDB);
                             //set VCOM deselect level
    WriteCommand(0x35);
    WriteCommand(0xA6);
                             //set normal display
    WriteCommand(0xAF);
                             //display on
```

Note 1: Initial code is for reference only. Please make the best adjustment with the OLED module. Note 2: Command: Set Contrast Control (0x81), This command sets the Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current increases as the contrast step value increases. The segment current increases, the OLED brightness increases.

}

I2C-bus data format

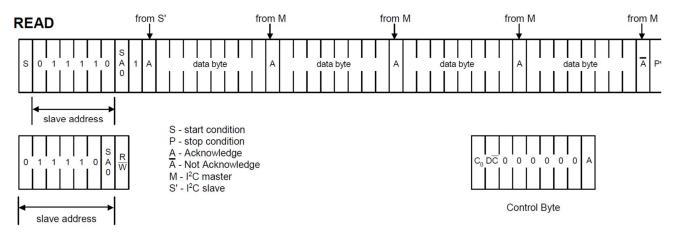


Figure 7 I²C Protocol

Note1:

1. Co = "0": The last control byte, only data bytes to follow,

Co = "1": Next two bytes are a data byte and another control byte;

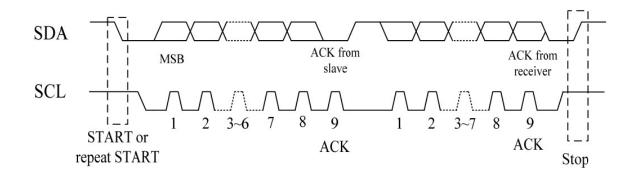
2. D/C $\,=\,$ "0" $\,:$ The data byte is for command operation,

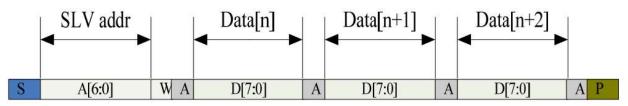
D/C = "1": The data byte is for RAM operation.

3. SA0 = Slave address bit

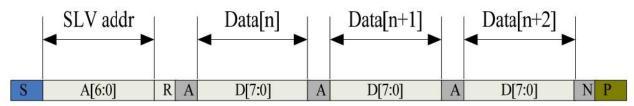
I2C address bit (SA0)

The slave address is following the start condition for recognition use. The slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (A0 pin acts as SA0).


6.4 TOUCH PANEL's application code.


6.4.1 I2C address format

I2C slave addresses: 0x70


6.4.2 I2C Read/Write Interface description

The I2C is always configured in the Slave mode.

I2C master write, slave read (Slave address: 0x71)

I2C master read, slave write (Slave address: 0x70)

Mnemonics Description

Mnemonics	Description
S	I2C Start or I2C Restart
A[6:0]	Slave address
R/W	READ/WRITE bit, '1' for read, '0'for write
A(N)	ACK(NACK)
P	STOP: the indication of the end of a packet (if this bit is missing, S will indicate the end of the current packet and the beginning of the next packet)

Timing Characteristics

Parameter	Min	Max	Unit
SCL frequency	10	400	KHz
Bus free time between a STOP and START condition	4.7	\	us
Hold time (repeated) START condition	4.0	\	us
Data setup time	250	\	ns
Setup time for a repeated START condition	4.7	1	us
Setup Time for STOP condition	4.0	\	us

6.4.3 Coordinates Information

Address	Name	Default	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Host
riddiess	Ivanic	Value	DIU	Ditto	Dits	DIG	DIO	DILL	Ditt	Ditto	Access
0x00	DEV_MODE	0x00		[2:0]]	Device	Mode					R/W
0x01	GEST_ID	0x00	[7:0]0	Gesture	ID					•	R
0x02	TD_STATUS	0x00					points			ch	R
0x03	P1_XH	0xFF	Event	7:6]1 st [3:0] 1 st Touch Event Flag X Position[11:8]			R				
0x04	P1_XL	0xFF	[7:0]	1 st Touc	h X Po	sition					R
0x05	P1_YH	0xFF	[7:4]	1 st Touc	h ID			1 st Touc ition[1			R
0x06	P1_YL	0xFF	[7:0]	1st Touc	h Y Po	sition					R
0x07	P1_WEIGHT	0xFF	[7:0]	1 st Touc	h Weig	ht					R
0x08	P1_MISC	0xFF	[7:4]	1 st Touc	h Area						R
0x09	P2_XH	0xFF	[7:6]2 Event	Flag				2 nd Touc sition[1			R
0x0A	P2_XL	0xFF	[7:0]	2 nd Tou	ch X Po	osition					R
0x0B	P2_YH	0xFF		2 nd Touc				2 nd Tou ition[1			R
0x0C	P2_YL	0xFF		2 nd Tou							R
0x0D	P2_WEIGHT	0xFF	[7:0]	2 nd Tou	ch Weig	ght	8		20		R
0x0E	P2_MISC	0xFF	[7:4]	2 nd Tou	ch Area	ı					R

TD_STATUS

This register is the Touch Data status register.

Address	Bit Address	Register Name	Description
0x02	3:0	Number of touch points [3:0]	The detected point number, 1-2 is valid.
	7:4	Reserved	

Pn_XH(n:1-2)

This register describes MSB of the X coordinate of the nth touch point and the corresponding event flag.

Address	Bit Address	Register Name	Description
0x03	7:6	Event Flag	00b: Press Down 01b: Lift Up
0x09			10b: Contact 11b: No event
	5:4		Reserved
	3:0	Touch X Position [11:8]	MSB of Touch X Position in pixels

Pn_XL(n:1-2)

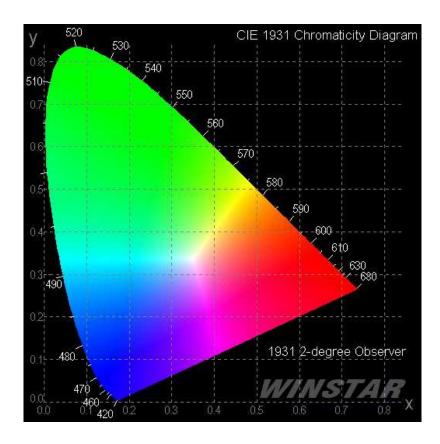
This register describes LSB of the X coordinate of the nth touch point.

Address	Bit Address	Register Name	Description
0x04			
~	7:0	Touch X Position [7:0]	LSB of the Touch X Position in pixels
0x0A			

Pn_YH(n:1-2)

This register describes MSB of the Y coordinate of the nth touch point and corresponding touch ID.

_			
Address	Bit Address	Register Name	Description
0x05 ~	7:4	Touch ID[3:0]	Touch ID of Touch Point, this value is 0x0F when the ID is invalid
0x0B	3:0	Touch Y Position [11:8]	MSB of Touch Y Position in pixels


Pn_YL(n:1-2)

This register describes LSB of the Y coordinate of the nth touch point.

Address	Bit Address	Register Name	Description
0x06			
~	7:0	Touch Y Position [7:0]	LSB of the Touch Y Position in pixels
0x0C			

7.Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V)θ	_	160	_	_	deg
View Angle	(Η)φ	_	160	_	_	deg
Contrast Ratio	CR	Dark	10,000:1	_	_	_
D Time	T rise	_	_	10	_	μs
Response Time	T fall	_	_	10	_	μs
Display with 100% checkerboard Brightness				100	_	cd/m ²
CIEx(White	(CIE1931)	0.24	0.28	0.32	_	
CIEy(White	(CIE1931)	0.28	0.32	0.36	_	

8.OLED Lifetime

ITEM	Conditions	Min	Тур	Remark
Operating Life Time	Ta=25°C / Initial 50% checkerboard brightness Typical Value	20,000 Hrs		Note

Note:

- 1. Lifetime is defined the amount of time when the luminance has decayed to <50% of the minimal brightness.
- 2. This analysis method uses life data obtained under accelerated conditions to extrapolate an estimated probability density function (*pdf*) for the product under normal use conditions.
- 3. Screen saving mode will extend OLED lifetime.
- 4. Lifetime is not guaranteed one but expected lifetime in normal condition.

9.Reliability

Content of Reliability Test

Environmenta	I Test		T
Test Item	Content of Test	Test Condition	Applicable Standard
High Temperature storage	Endurance test applying the high storage temperature for a long time.	85°C 240hrs	
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-40°C 240hrs	
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70°C 240hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 240hrs	
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	60°C,90%RH 240hrs	
High Temperature/ Humidity Operation	Endurance test applying the high temperature and high humidity Operation for a long time.	60°C,90%RH 120hrs	
Temperature Cycle	Endurance test applying the low and high temperature cycle. -40°C 25°C 80°C 30min 5min 30min 1 cycle	-40°C / 80°C 30 cycles	
Mechanical Tes	st		
Vibration test	Endurance test applying the vibration during transportation and using.	Frequency:10~55Hz amplitude:1.5mm Time:0.5hrs/axis Test axis:X,Y,Z	
Others			
Static electricity test	Endurance test applying the electric stress to the finished product housing.	Air Discharge model ±4kv,10 times	

^{***} Supply voltage for OLED system =Operating voltage at 25°C

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability. After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the functional test at 23±5°C; 55±15% RH.
- 2. All-pixels on/off exchange is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for High Temperature storage, High Temperature/ Humidity Storage, Temperature Cycle.
- 4. No Condensation.

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within ± 50% of initial value.

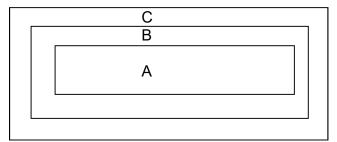
APPENDIX:

RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.

10.Inspection specification

Inspection Standard:


MIL-STD-105E table normal inspection single sample level II.

Definition

1 Major defect: The defect that greatly affect the usability of product.

2 Minor defect: The other defects, such as cosmetic defects, etc.

Definition of inspection zone:

Zone A: Active Area

Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

Inspection Methods

- 1 The general inspection: Under fluorescent light illumination: 750~1500 Lux, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.
- 2 The luminance and color coordinate inspection : By SR-3 or BM-7 or the equal equipments, in the dark room, under 25±5°C.

NO	Item	Criterion	AQL
01	Electrical Testing	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 OLED viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect. 	0.65
02	Black or white spots on OLED (display only)	 2.1 White and black spots on display ≤0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm. 	2.5

NO	Item		Criterio	n		AQL
	OLED black spots, white spots, contamination (non-display)	3.1 Round type : As following drawing Φ=(x+y)/2 → X ← ↓ Y	SIZE	Acceptable QTY ignore 2 1	Zone A+ B A+ B A+ B A+ B	2.5
03		3.2 Line type : (As W Length L≤3.0 L≤2.5	n Width W≤0.02 0 0.02 < W≤0.0	Acceptable Q TY ignore	Zone A+B A+B A+B	2.5
04	Polarizer bubbles /Dent	4.1 If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction. 4.2 The polarizer of	Size Φ $\Phi \le 0.20$ $0.20 < \Phi \le 0.50$ $0.50 < \Phi \le 1.00$ $1.00 < \Phi$ Total Q TY	Acceptable Q TY ignore 3 2 0 3	Zone A+B A+B A+B A+B	2.5
05	Scratches	Follow NO.3 OLEI	O black spots, whit	te spots, contaminat	ion.	

NO	Item	Criterion	
06	Chipped glass	Symbols Define: x: Chip length y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: OLED side length L: Electrode pad length: 6.1 General glass chip: 6.1.1 Chip on panel surface and crack between panels:	2.5
06	Glass crack	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

NO	Item	Criterion		
06	Glass crack	6.2.2 Non-conductive portion: y y: Chip width x: Chip length $x = 1/8a$ $x = 1/8a$ $x = 1/8a$ o < $x = 1/8a$ o < $x = 1/8a$ o the chipped area touches the ITO terminal, over 2/3 of the ITO must remain and be inspected according to electrode terminal specifications. olf the product will be heat sealed by the customer, the alignment mark not be damaged. 6.2.3 Substrate protuberance and internal crack. y: width y = 1/3L x = a	AQL 2.5	
07	Cracked glass	The OLED with extensive crack is not acceptable.		
08	Backlight elements	8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using OLED spot, lines and contamination standards.		
09	Bezel	8.3 Backlight doesn't light or color wrong.9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.		
10	PCB, COB	10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts.		
		10.7 The jumper on the PCB should conform to the product characteristic chart.10.8 If solder gets on bezel tab pads, OLED pad, zebra pad or screw hold pad, make sure it is smoothed down.	0.65 2.5	

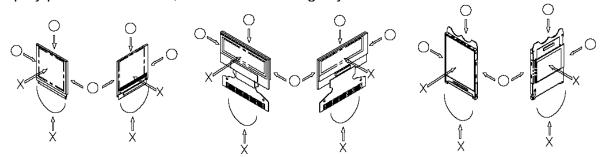
NO	Item	Criterion	
11	Soldering	 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB. 	2.5 2.5 2.5 0.65
12	General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet. 12.9 OLED pin loose or missing pins. 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 	2.5 0.65 2.5 2.5 2.5 2.5 0.65 0.65 0.65

Check Item	Classification	Criteria
No Display	Major	
Missing Line	Major	
Pixel Short	Major	
Dark Pixel	Major	
Wrong Display	Major	
Un-uniform B/A x 100% < 70% A/C x 100% < 70%	Major	A Normal B Dark Fixel Light Fixel

11.Precautions in use of OLED Modules

Modules

- (1) Avoid applying excessive shocks to module or making any alterations or modifications to it.
- (2) Don't make extra holes on the printed circuit board, change the components or modify its shape of OLED display module.
- (3) Don't disassemble the OLED display module.
- (4) Do not apply input signals while the logic power is off.
- (5) Don't operate it above the absolute maximum rating.
- (6) Don't drop, bend or twist OLED display module.
- (7) Soldering: only to the I/O terminals.
- (8) Hot-Bar FPC soldering condition: 280~350C, less than 5 seconds.
- (9) Winstar has the right to change the passive components (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.) and change the PCB Rev. (In order to satisfy the supplying stability, management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Winstar have the right to modify the version.)
- (10) Winstar has the right to upgrade or modify the product function.
- (11) For COG & COF structure OLED products, customers should reserve VCC (VPP) adjustment function or software update function when designing OLED supporting circuit. (The progress of OLED light-emitting materials will increase the conversion efficiency and the brightness. The brightness can be adjusted if necessary).


11.1. Handling Precautions

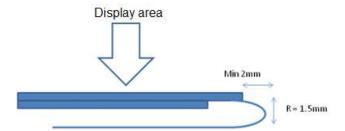
- (1) Since the display panel is being made of glass, do not apply mechanical impacts such as dropping from a high position.
- (2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- (3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged. So, be careful not to apply pressure to these sections.
- (4) The polarizer covering the surface of the OLED display module is soft and easily scratched.
- (5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage by using following adhesion tape.
 - * Scotch Mending Tape No. 810 or an equivalent
 - Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy.

Also, pay attention that the following liquid and solvent may spoil the polarizer:

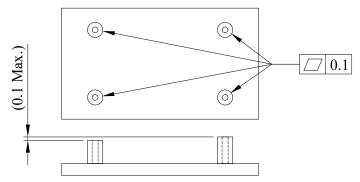
- * Water
- * Ketone
- * Aromatic Solvents
- (6) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OLED display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5.
- (7) Do not touch the following sections whenever possible while handling the OLED display modules.
 - * Pins and electrodes
 - * Pattern layouts such as the TCP & FPC

(8) Hold OLED display module very carefully when placing OLED display module into the System housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

- (9) Do not apply stress to the LSI chips and the surrounding molded sections.
- (10) Pay sufficient attention to the working environments when handing OLED display modules to prevent occurrence of element breakage accidents by static electricity.
 - * Be sure to make human body grounding when handling OLED display modules.
 - * Be sure to ground tools to use or assembly such as soldering irons.
 - * To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
 - * Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.


11.2. Storage Precautions

- (1) When storing OLED display modules, put them in static electricity preventive bags to avoid be directly exposed to sun or lights of fluorescent lamps. And, also, place in the temperature 25±5°C and Humidity below 65% RH.(We recommend you to store these modules in the packaged state when they were shipped from Winstar. At that time, be careful not to let water drops adhere to the packages or bags.)
- (2) When the OLED display module is being dewed or when it is placed under high temperature or high humidity environments, the electrodes may be corroded if electric current is applied. Please store it in clean environment.


11.3. Designing Precautions

- (1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, OLED display module may be damaged.
- (2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specification and to make the signal line cable as short as possible.
- (3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD / VCC). (Recommend value: 0.5A)
- (4) Pay sufficient attention to avoid occurrence of mutual noise interference with the nearby devices.
- (5) As for EMI, take necessary measures on the equipment side basically.
- (6) If the power supplied to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module.
 - * Connection (contact) to any other potential than the above may lead to rupture of the IC.
- (7) If this OLED driver is exposed to light, malfunctioning may occur and semiconductor elements may change their characteristics.

- (8) The internal status may be changed, if excessive external noise enters into the module. Therefore, it is necessary to take appropriate measures to suppress noise generation or to protect module from influences of noise on the system design.
- (9) We recommend you to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.
- (10) It's pretty common to use "Screen Saver" to extend the lifetime and Don't use the same image for long time in real application. When an OLED display module is operated for a long of time with fixed pattern, an afterimage or slight contrast deviation may occur.
- (11) The limitation of FPC and Film bending.

(12) The module should be fixed balanced into the housing, or the module may be twisted.

(13) Please heat up a little the tape sticking on the components when removing it; otherwise the components might be damaged.

11.4. Precautions when disposing of the OLED display modules

(1) Request the qualified companies to handle industrial wastes when disposing of the OLED display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.