

NLV-5201
Fixed Position 2D Imager Scanner

**User's Manual** 

The information in this document is subject to change without notice.

### **Document History**

Model Number: NLV-5201 Specification Number: TS18047 Edition: 1st Original Spec Number: (TS18046)

Date: 22-February-2019

### © 2019 Opticon. All rights reserved.

This manual may not, in whole or in part, be copied, photocopied, reproduced, translated or converted to any electronic or machine readable form without prior written consent of Opticon.

### **Limited Warranty and Disclaimers**

Please read this manual carefully before installing or using the product.

### **Serial Number**

A serial number appears on all Opticon products. This official registration number is directly related to the device purchased. Do not remove the serial number from your Opticon device. Removing the serial number voids the warranty.

### **Warranty**

Unless otherwise agreed in a written contract, all Opticon products are warranted against defects in materials and workmanship for two years after purchase excluding batteries. Opticon will repair or, at its option, replace products that are defective in materials or workmanship with proper use during the warranty period. Opticon is not liable for damages caused by modifications made by a customer. In such cases, standard repair charges will apply. If a product is returned under warranty and no defect is found, standard repair charges will apply. Opticon assumes no liability for any direct, indirect, consequential or incidental damages arising out of use or inability to use both the hardware and software, even if Opticon has been informed about the possibility of such damages.

### **Packaging**

The packing materials are recyclable. We recommend that you save all packing material to use should you need to transport your data collector or send it for service. Damage caused by improper packaging during shipment is not covered by the warranty.

#### **Trademarks**

Trademarks used are the property of their respective owners.

Opticon Inc. and Opticon Sensors Europe B.V. are wholly owned subsidiaries of OPTOELECTRONICS CO.,LTD., 12-17, Tsukagoshi 4-chome, Warabi-shi, Saitama, Japan 335-0002. TEL +81-(0) 48-446-1183; FAX +81-(0) 48-446-1184

#### **SUPPORT**

USA Europe

Phone: 800-636-0090 Phone: +31235692728

Email: support@opticonusa.com Email: support@opticon.com

Web: www.opticon.com



## **Caution and Warning**

Read following caution carefully before installing and/or using this product. Incorrect handling may cause malfunction, overheating, smoke, fire, injury and electric shock etc.

### **^**Caution

### **Electrical handling**

- In case any abnormality occurs in the scanner or stops working, unplug the cable and the AC adapter and contact the dealer. Leaving as is may cause malfunction, overheating, smoke and fire.
- Do not use this product at voltage outside the specified range. It may cause overheating, smoke and fire.
- Do not let the AC adapter get wet. It may cause overheating, smoke, fire and electric shock.
- Do not plug/unplug the connectors while power is supplied.

#### Excessive shock / stress

- · Do not drop this product.
- Do not push or place this product under or between heavy items.
- Do not swing the product around by the cable. It may cause injury or damage to the device.

#### Cable handling

- Do not wrap NLV-5201 cable around a host device (PC, tablet etc.). It may cause breakage to the strain relief and the cable jacket, and could cause malfunction, overheating, smoke and fire.
- Do not place this product and AC adapter under or between heavy items.
- Do not bend the cable at extremely low temperatures.
- · Immediately unplug the cable and AC adapter, then contact your dealer if:
  - If the cable jacket tears open or separates from the connector.
  - If any core wire, become exposed.
  - If the cable generates heat, even if it looks normal.

Continued use in any of these conditions may cause malfunction, overheating, and/or fire.

### **Operating environment**

- Do not use this product at temperatures outside the specified range.
- Do not use this product near combustible materials (gas, gunpowder etc.). It may cause smoke and fire
- Do not immerse this product in water or any other liquid.
- If any condensation forms on the product, abstain from the use of it until moisture has evaporated to prevent malfunctions.
- Do not store this product in dusty environments and in extremely high humidity.
- Do not store this product in extremely cold or hot places.
- Avoid exposure to direct sunlight for long periods of time.
- Avoid static electricity and do not put the product near a radio or a TV. Excessive static electricity may cause malfunction.
- · Do not place in an unstable place.

#### Others

- Do not disassemble this product.
- Do not stare into the LED light from the scan window. It may damage your eyes.
- · Do not soil or scratch the scan window. It may have a bad effect on the reading.
- Do not expose this product to edible / industrial fat and chemicals.
- This product may be affected by an instantaneous power-on condition of machinery, lighting, or motors, etc.
- · Do not let children use this product.

### **Regulatory Compliance**

(1) LED Safety IEC 62471 Exempt Risk Group

(2) EMC EN 55024, EN 55032 Class B

### FCC Part 15 Subpart B Class B

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful Interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

### VCCI クラス B

この装置は、クラスB機器です。この装置は、住宅環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。

取扱説明書に従って正しい取り扱いをして下さい。

VCCI-B

### **Disclaimer:**

OPTOELECTRONICS CO.,LTD. Will not bear any responsibility in case of malfunction, accident, repair and damage assurance.

## **Revision History**

Document Name: NLV-5201 User's Manual

| Edition | Date       | Page | Section | Description of Changes |
|---------|------------|------|---------|------------------------|
| 1st     | 2019/02/22 | -    | -       | Initial release        |
|         |            |      |         |                        |

# **Contents**

| Cautio | n and Warning                                                      | i  |
|--------|--------------------------------------------------------------------|----|
| 1 AI   | bstract                                                            | 1  |
| 1.1    | Features of the Scanner                                            | 2  |
| 1.2    | Usage of the Scanner                                               | 3  |
| 1.3    | Flow to Integrate                                                  | 4  |
| 1.3    | 3.1 Flow to Integrate for Industrial Uses                          | 4  |
| 1.3    | 3.2 Flow to Integrate for General Uses                             | 5  |
| 2 B    | efore Using                                                        | 6  |
| 2.1    | Model Details                                                      | 7  |
| 2.1    | 1.1 Standard                                                       | 7  |
| 2.1    | 1.2 Model Description                                              | 7  |
| 2.2    | Package Contents                                                   | 8  |
| 2.3    | Connect to the Host                                                | 9  |
| 2.4    | How to Read                                                        | 11 |
| 2.5    | Depth of Field and Focus Type                                      | 12 |
| 2.5    | 5.1 Standard Model (SR) Depth of Field                             | 12 |
| 2.5    | 5.2 High Resolution Model (HD) Depth of Field                      | 13 |
| 2.5    | Ultra High Resolution model (UD) Depth of Field                    | 14 |
| 2.6    | Detailed View                                                      | 15 |
| 2.7    | Operation Mode and Control Panel Description                       | 16 |
| 2.7    | 7.1 Operation Mode                                                 | 16 |
| 2.7    | 7.2 Control Panel Operation Specifications                         | 17 |
| 2.7    | 7.3 LED Indicator Specifications                                   | 18 |
| 2.7    | 7.4 Buzzer and LED Indicator                                       | 19 |
| 2.8    | Operation Transition                                               | 20 |
| 2.8    | 8.1 Normal Trigger                                                 | 20 |
| 2.8    | 8.2 Auto Trigger                                                   | 21 |
| 2.8    | 8.3 Operation Invalid Transition Diagram                           | 22 |
| 2.9    | Installation of the Scanner                                        | 23 |
| 2.10   | Scan Area                                                          | 24 |
| 2.1    | 10.1 Image Range                                                   | 24 |
| 2.1    | 10.2 Optical Path                                                  | 25 |
| 2.11   | Scanned Media and Placement                                        | 26 |
| 2.1    | 11.1 Solution for Specular Reflection of the LED Illumination      | 26 |
| 2.1    | 11.2 Solution for Specular Reflection of the External Illumination | 27 |
| 2.12   | Exit Window Placement                                              | 28 |
| 2.1    | 12.1 Exit Window Material                                          | 28 |
| 2.1    | 12.2 Solution for Specular Reflection of the Illumination          | 29 |
| 3 C    | onfigurations                                                      | 30 |
| 3.1    | Configuring with Commands                                          | 31 |

|   | 3.1.1     | Command Packet                    | 31 |
|---|-----------|-----------------------------------|----|
|   | 3.1.2     | Configuring with 2D Menu          | 32 |
|   | 3.1.3     | Configuring with 1D Menu Code     | 33 |
|   | 3.2 Con   | nmand Packet Sending Precautions  | 34 |
|   | 3.2.1     | Each interface Default Setting    | 34 |
|   | 3.2.2     | Save Settings                     | 35 |
|   | 3.2.3     | Custom Setting                    | 35 |
|   | 3.3 Bas   | ic Commands                       | 36 |
|   | 3.3.1     | ACK/NAK for Serial Commands       | 36 |
|   | 3.3.2     | Diagnostic Commands               | 36 |
|   | 3.3.3     | Enable/Disable 2D Menu Code       | 36 |
|   | 3.3.4     | Enable/Disable 1D Menu Code       | 36 |
|   | 3.3.5     | Image Settings                    | 37 |
|   | 3.3.6     | Disable Reading Operation         | 38 |
|   | 3.3.7     | Buzzer and Indicator              | 38 |
|   | 3.3.8     | Reboot the Scanner                | 38 |
|   | 3.3.9     | Enable/Disable Mode Key           | 38 |
|   | 3.3.10    | Direct Numerical Input Command    | 39 |
| 4 | Indicato  | r Options                         | 40 |
|   | 4.1 Buz   | zer                               | 41 |
|   | 4.1.1     | Buzzer Loudness                   | 41 |
|   | 4.1.2     | Good Read Buzzer                  | 41 |
|   | 4.1.3     | Start-up Buzzer                   | 42 |
|   | 4.1.4     | Read Timeout Buzzer               | 42 |
|   | 4.1.5     | Intermediate Buzzer               | 42 |
|   | 4.2 Stat  | us LED                            | 43 |
|   | 4.2.1     | Status LED Lighting Time          | 43 |
|   | 4.3 Goo   | d Read Aiming                     | 44 |
|   | 4.4 India | cator in General                  | 45 |
|   | 4.4.1     | Indicator Timing                  | 45 |
| 5 | Interface | 9                                 | 46 |
|   | 5.1 RS-   | 232C                              | 47 |
|   | 5.1.1     | RS-232C Basic Information         | 48 |
|   | 5.1.2     | Baud Rate (Transfer Speed)        | 48 |
|   | 5.1.3     | Character Format                  | 49 |
|   | 5.1.4     | Handshaking (Flow Control)        | 49 |
|   | 5.1.5     | Inter Character Delay (RS-232C)   | 54 |
|   | 5.1.6     | Trouble Shooting (RS-232C)        | 54 |
|   | 5.2 USE   | 3-HID                             | 55 |
|   | 5.2.1     | USB-HID Basic Information         | 56 |
|   | 5.2.2     | Connection Confirmation (USB-HID) | 57 |
|   | 5.2.3     | NumLock CapsLock control          | 57 |

|   | 5.2.4    | Data Output Speed (USB-HID)                     | 58 |
|---|----------|-------------------------------------------------|----|
|   | 5.2.5    | Inter Character Delay (USB-HID)                 | 58 |
|   | 5.2.6    | Keyboard Language                               | 59 |
|   | 5.2.7    | Trouble Shooting (USB-HID)                      | 60 |
|   | 5.3 USE  | 3-COM                                           | 61 |
|   | 5.3.1    | USB-COM Basic Information                       | 62 |
|   | 5.3.2    | Integration (USB driver)                        | 62 |
|   | 5.3.3    | Connection Confirm                              | 62 |
|   | 5.3.4    | Fixed USB-COM Port                              | 63 |
|   | 5.3.5    | Connection Method                               | 63 |
|   | 5.3.6    | COM to HID Output                               | 63 |
|   | 5.3.7    | Trouble Shooting (USB-COM)                      | 64 |
|   | 5.4 Com  | nmon Settings                                   | 65 |
|   | 5.4.1    | Data Buffer Mode                                | 65 |
| 6 | Reading  | and Timing                                      | 66 |
|   | 6.1 Rea  | ding and Trigger Control                        | 67 |
|   | 6.1.1    | Code Read Timing                                | 67 |
|   | 6.1.2    | Command Trigger Control                         | 68 |
|   | 6.1.3    | External Trigger Signal Control                 | 69 |
|   | 6.1.4    | Read Time Setting                               | 70 |
|   | 6.1.5    | Trigger Delay                                   | 71 |
|   | 6.1.6    | Decode Timeout                                  | 72 |
|   | 6.2 OK/I | NG Signal                                       | 73 |
|   | 6.2.1    | Enable/Disable OK/NG signal                     | 73 |
|   | 6.2.2    | OK/NG Signal Behavior Settings                  | 74 |
| 7 | Tuning a | and Bank Function                               | 75 |
|   | 7.1 Tuni | ing Overview                                    | 76 |
|   | 7.1.1    | Tuning Function                                 | 76 |
|   | 7.1.2    | Tuning Setting Flow                             | 77 |
|   | 7.2 Tuni | ing                                             | 78 |
|   | 7.2.1    | Execute Tuning                                  | 78 |
|   | 7.2.2    | Setting the Exposure Adjustment Range of Tuning | 79 |
|   | 7.3 Rea  | ding Test                                       | 80 |
|   | 7.3.1    | Reading Test Command                            | 80 |
|   | 7.4 Banl | k Function                                      | 81 |
|   | 7.4.1    | Bank Selection                                  | 81 |
|   | 7.4.2    | Bank Specify Trigger                            | 81 |
|   | 7.4.3    | Confirm Current Bank                            | 81 |
|   | 7.4.4    | Initialize Bank                                 | 81 |
| 8 | Read Op  | otions                                          | 82 |
|   | 8.1 Rea  | d Modes Overview                                | 83 |
|   | 8.1.1    | Read Operation Flow                             | 83 |

|   | 8.1.2     | Read Modes                                               | 84  |
|---|-----------|----------------------------------------------------------|-----|
|   | 8.1.3     | Batch Reading                                            | 86  |
|   | 8.1.4     | Data Edit Function                                       | 86  |
|   | 8.2 Auto  | o Trigger                                                | 87  |
|   | 8.2.1     | Normal Auto Trigger (Without Stand)                      | 87  |
|   | 8.2.2     | Auto Trigger Sensitivity                                 | 87  |
|   | 8.2.3     | Double Read Reset Time                                   | 87  |
|   | 8.2.4     | Read Time Adjustment                                     | 88  |
|   | 8.2.5     | Auto Trigger Sleep Mode                                  | 88  |
|   | 8.3 Illun | nination and Aiming                                      | 89  |
|   | 8.3.1     | Reading LED Illumination                                 | 89  |
|   | 8.3.2     | LED Aiming                                               | 89  |
| 9 | Code O    | ptions                                                   | 90  |
|   | 9.1 Sett  | ing of Readable Codes                                    | 91  |
|   | 9.1.1     | 1D Codes                                                 | 91  |
|   | 9.1.2     | Postal Code                                              | 92  |
|   | 9.1.3     | GS1 DataBar                                              | 93  |
|   | 9.1.4     | GS1 Composite Code                                       | 93  |
|   | 9.1.5     | 2D Codes                                                 | 94  |
|   | 9.1.6     | Other Options for Codes                                  | 94  |
|   | 9.1.7     | OCR                                                      | 95  |
|   | 9.2 Sett  | ing of Code Common Options                               | 96  |
|   | 9.2.1     | GS1 Convert                                              | 96  |
|   | 9.2.2     | Positive and Negative Image of Barcodes (1D code common) | 97  |
|   | 9.2.3     | Redundancy (1D code common)                              | 98  |
|   | 9.2.4     | Add-on waiting time                                      | 98  |
|   | 9.2.5     | ECI Protocol Output                                      | 99  |
|   | 9.2.6     | OCR Free Edit                                            | 100 |
|   | 9.3 Sett  | ing of Code Specific Options                             | 101 |
|   | 9.3.1     | UPC                                                      | 101 |
|   | 9.3.2     | EAN/JAN                                                  |     |
|   | 9.3.3     | Code 39 and It. Pharm (Code 32)                          | 108 |
|   | 9.3.4     | Codabar                                                  | 110 |
|   | 9.3.5     | Interleaved 2 of 5 and S-Code                            | 112 |
|   | 9.3.6     | Code128                                                  | 113 |
|   | 9.3.7     | IATA                                                     | 114 |
|   | 9.3.8     | MSI/Plessey                                              | 114 |
|   | 9.3.9     | UK/Plessey                                               | 114 |
|   | 9.3.10    | Telepen                                                  | 114 |
|   | 9.3.11    | Code 11                                                  | 115 |
|   | 9.3.12    | Korean Postal Authority                                  | 115 |
|   | 9.3.13    | GS1 DataBar                                              | 116 |

| 9.3.14      | Composite GS1 DataBar                                        | 117 |
|-------------|--------------------------------------------------------------|-----|
| 9.3.15      | PDF 417                                                      | 118 |
| 9.3.16      | QR Code                                                      | 119 |
| 9.3.17      | Data Matrix                                                  | 121 |
| 9.3.18      | Aztec Code                                                   | 122 |
| 9.4 Sett    | ing of Number of Characters                                  | 123 |
| 9.4.1       | Fixed Length ON, Minimum / Maximum Length for Selected Codes | 123 |
| 9.4.2       | Command List: Fixed Length ON/Minimum/Maximum Length         | 124 |
| 10 String C | Options                                                      | 125 |
| 10.1 Pre    | fix / Suffix (appending character function)                  | 126 |
| 10.1.1      | Program Value:                                               | 127 |
| 10.1.2      | Set Prefix / Suffix                                          | 128 |
| 10.1.3      | Command List: Settings of the Prefix / Suffix                | 129 |
| 10.1.4      | ASCII (Prefix / Suffix Values)                               | 131 |
| 10.1.5      | Code ID                                                      | 132 |
| 10.1.6      | Code Length                                                  | 132 |
| 10.1.7      | Code Coordinates                                             | 133 |
| 10.1.8      | Scan Time                                                    | 134 |
| 10.2 Cas    | e Conversion                                                 | 135 |
| 11 Append   | ix                                                           | 136 |
| 11.1 Cod    | le ID Table                                                  | 137 |
| 11.1.1      | Opticon Code ID prefix / suffix value                        | 137 |
| 11.1.2      | Code Option AIM / ISO15424 Code ID prefix / Suffix value     | 138 |
| 11.2 NL\    | /-5201 Specification Overview                                | 142 |
| 11.2.1      | Common Specification Overview                                | 142 |
| 11.2.2      | Technical Specifications                                     | 145 |
| 11.2.3      | Detailed View                                                | 148 |
| 11.2.4      | Product Label                                                | 149 |
| 11.3 San    | nple Codes                                                   | 150 |
| 11.3.1      | 1D Barcode                                                   | 150 |
| 11.3.2      | Postal Code                                                  | 154 |
| 11.3.3      | GS1 DataBar                                                  | 155 |
| 11.3.4      | GS1 Composite Code                                           | 156 |
| 11.3.5      | 2D Code                                                      | 158 |
| 11.3.6      | OCR Font (Machine Readable Travel Document)                  | 159 |
| 11.3.7      | OCR Font (Free OCR Edit)                                     | 160 |

## 1 Abstract

This document provides the user's manual for the NLV-5201 2D handy scanner (hereafter called "scanner")

- 1.1 Feature of the Scanner
- 1.2 Usage of the Scanner
- 1.3 Flow to Integrate

### 1.1 Features of the Scanner

The NLV-5201 is a fixed position 2D imager scanner that enables high speed reading of a standard barcode, 2D code and OCR font. Main features are as follows:

#### High-speed reading

The high-speed CMOS sensor (100fps) and high-speed CPU enables stress-free scanning and fast response from fast movement and poor/bright lighting conditions.

#### Tune function

Integrated tuning function enables locked settings based on the target environment for the quickest possible decodes. Tuning can be enabled by pressing the mode key and watching the 3-color indicators.

#### Motion tolerance

Fast shutter technology and new tune feature provides for the best prevention of image blur and quickest decode times. Perfect for in-motion automation applications.

#### 3 Focus Model

NLV-5201 has 3 focus models to choose from: The standard model, (fixed focus @ 113mm). A High Density model 'HD' @ 63mm focus and Ultra Density 'UD' @ 43mm focus models

### • Data edit programming (data output formatting)

This scanner features a unique script program function called "Data Editing" which gives a user an almost unlimited flexibility to format the scanned data before it is sent out. Multiple 1D code, 2D code and OCR can be (partially) combined and fixed parts can be added, subtracted, or substituted before its final output. It also supports GS1 application identifier and allows data edit outputting for logistics, POS, medicines and medical instruments barcodes.

### • Green LED aiming and Warm-White LED Illumination

A well-defined single line of green LED light and efficient warm-white LED illumination makes it easy to aim the scanner while providing safety and long-life.

• The Scanner is a RoHS compliant product, as declared by OPTOELECTRONICS CO.,LTD.

## 1.2 Usage of the Scanner

The scanner can be used from common usage to industrial use like factory production line etc. Integration varies depending on the usage.

Exposure control has auto adjustment and tuning. Select according the usage.

| Industrial use                                                                                                | Common use                                                                                 |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Example of use: Factory line etc.                                                                             | Example of use: Holing an product to read etc.                                             |
|                                                                                                               |                                                                                            |
| ₽                                                                                                             | Û                                                                                          |
| Exposure                                                                                                      | Control                                                                                    |
| Tuning                                                                                                        | Auto Adjustment (default)                                                                  |
| When reading distance and the code to read is fixed, reading will stabilized by setting the optimum exposure. | Adjust exposure automatically when the reading distance and the code to read is not fixed. |

### 1.3 Flow to Integrate

### Flow to Integrate for Industrial Uses

Flows to integrate the scanner for industrial use are described below.

### 1. Examine and Select the Scanner

Examine technical introduction in advance.

"Communication" "Reading position and focus model"

 $\rightarrow$  (Refer to  $\underline{2}$ ) Before using

 Product specification overview

 $\rightarrow$ (Refer to 11.2)



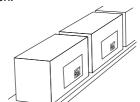


### 2. Download Tools

According to the operation, download necessary tools from our website.

- Install condition image confirmation, tuning and other settings.
- → "UniversalTuningTool"

• For USB-COM

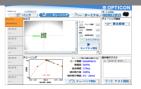

→ "USB Driver"



### 3. Fixing Position and Setting for operation

Confirm the optimun setting according to the operation.

- $\rightarrow$  (Refer to 3) Configurations
- Interface  $\rightarrow$  (Refer to <u>5</u>)
- $\rightarrow$  (Refer to 6) • Reading and Timing
- Read options  $\rightarrow$  (Refer to 8)
- $\rightarrow$  (Refer to <u>10</u>) • String Options






### 4. Tuning and Testing

Tune and test in the acturla envirioment.

• Tuning and bank function  $\rightarrow$  (Refer to 7)



### Integrate

### 1.3.2 Flow to Integrate for General Uses

Flows to integrate the scanner for general use are described below.

### 1. Examine and Select the Scanner

Examine technical introduction in advance.

 $\rightarrow$  (Refer to 2)

 $\rightarrow$  (Refer to 11.2)

 Product specification overview

• Before using

"Communication"

"Reading code"





### 2. Download Tools

According to the operation, download necessary tools from our website.

- Setting, Image acquisition, confirm communication
- → "UniversalConfig"

• USB-COM

• String Options

→ "USB Driver"



### 3. Setting and Testing

In the actual environment, evaluate the optimum setting according to the operation and perform a reading test.

(Refer to 10)

- $\rightarrow$  (Refer to 3) Configurations
- (Refer to 4) Indicator
- (Refer to 5) Interface
- Code Options (Refer to 9)
- Read Options (Refer to 8)





### 4. Create Setting Menu

Create a 2D menu code suitable for operation.

 $\rightarrow$  (Refer to 3.1.2) • 2D menu code



### **Integrate**

# 2 Before Using

Following explains the items required before using.

- 2.1 Model Details
- 2.2 Package Contents
- 2.3 Connect to the Host
- 2.4 How to Read
- 2.5 Depth of Field and Focus Type
- 2.6 Detailed View
- 2.7 Operation Mode and Control Panel Description
- 2.8 Operation Transition
- 2.9 <u>Installation of the Scanner</u>
- 2.10 Scan Area
- 2.11 Scanned Media and Placement
- 2.12 When Placing Exit Window

### 2.1 Model Details

The NLV-5201 model name is constructed by a combination of following.

| Model name | Focus                          | Interface                                      | Cable length | Optional<br>AC Adapter |
|------------|--------------------------------|------------------------------------------------|--------------|------------------------|
| NLV-5201   | None<br>or<br>-HD<br>or<br>-UD | -RS232C(LE) or -USB or -USB-COM or -RS232C(9P) | None         | None                   |
|            |                                | or<br>-RS232C                                  |              | +PS                    |

### 2.1.1 Standard

The following specs are the standard products.

| Standard            | Description                       |
|---------------------|-----------------------------------|
| NLV-5201-RS232C(LE) | Standard focus, RS-232C loose end |
| NLV-5201-USB        | Standard focus, USB-HID           |

Note: Other combinations only as special order, please contact sales offices for this.

### 2.1.2 Model Description

### Focus

| Symbol | Description                                            |
|--------|--------------------------------------------------------|
| None   | Standard focus model (focus distance: 113 mm)          |
| -HD    | High density focus model (focus distance: 63 mm)       |
| -UD    | Ultra-high density focus model (focus distance: 43 mm) |

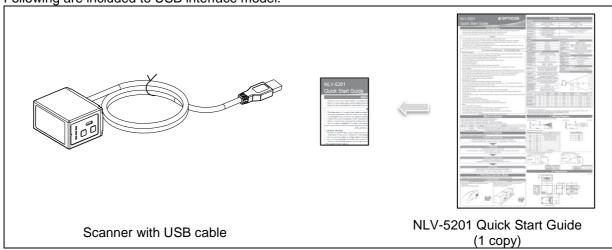
### Interface Cable

| Symbol      | Description                                                                    |  |
|-------------|--------------------------------------------------------------------------------|--|
| -RS232C(LE) | RS-232C loose end cable (open wires, no connector)                             |  |
| -USB        | USB cable is connected and interface default setting is USB-HID.               |  |
| -USB-COM    | USB cable is connected and interface default setting is USB-COM.               |  |
| -RS232C(9P) | RS-232C cable (power supply input connected to D-sub 9 pin 9)                  |  |
| -RS232C     | RS-232C cable with power pigtail (external AC power supply spec) is connected. |  |

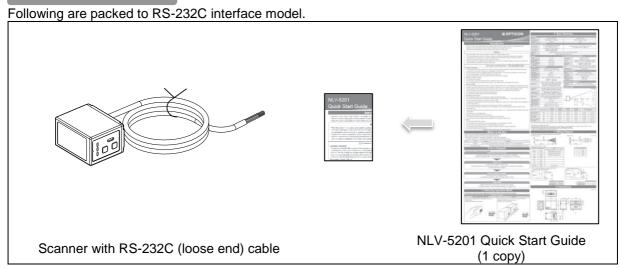
Cable Length

| Symbol | Description        |
|--------|--------------------|
| None   | Cable length 1.5 m |

Optional AC adapter


| Symbol | Description                                               |
|--------|-----------------------------------------------------------|
| None   | AC adapter not included.                                  |
| +PS    | AC adapter for RS-232C external power supply is included. |

### 2.2 Package Contents


Following items are packed to this product. Please check before using.

### USB-HID / USB-COM Interface Model

Following are included to USB interface model.

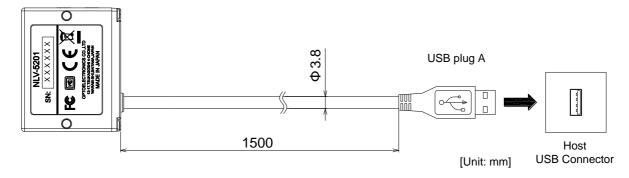


### RS-232C Interface Model



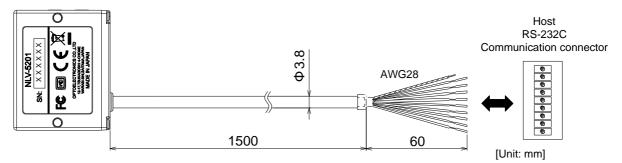
### 2.3 Connect to the Host

This section describes how to connect each interface to the host.


For interface setting details, refer to "5. Interface"

For details of installing the scanner, refer to "Installation of the Scanner".

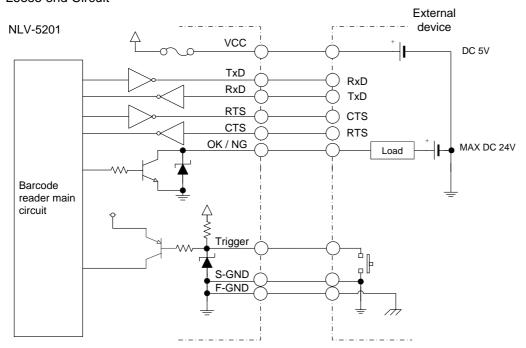
#### **Connecting with the Host device**


Connect interface connector to the host. When power is on, the scanner makes startup sound. After startup sound is completed, the scanner will be ready for reading.

### USB-COM/ USB-HID Interface Connection Diagram



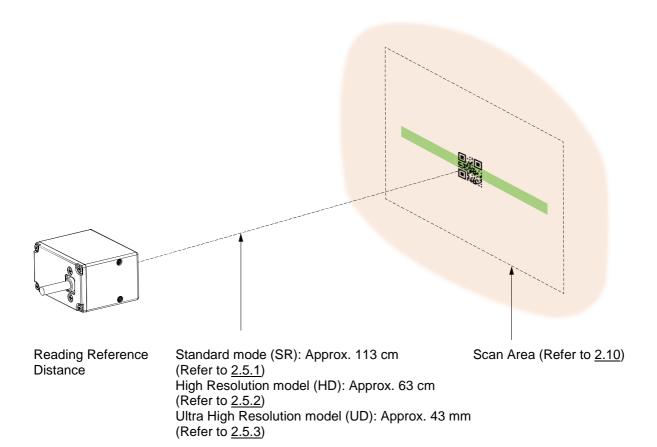
- \* USB-COM and USB-HID interface can be changed by the setting.
  \* For the USB-COM interface model, the Opticon USB-COM driver must be installed on your host device.
- \* While using USB-COM and not connected to the host, the scanner makes an error sound when reading.


### RS-232C (Loose End) Interface Connection Diagram



Loose end Pin Assignment

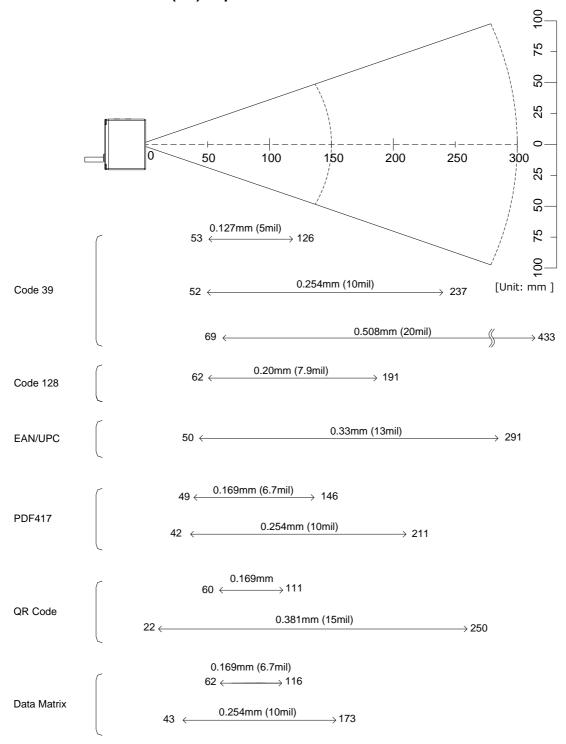
| Cable Color | Signal Name     | Notes                                  |  |  |  |  |
|-------------|-----------------|----------------------------------------|--|--|--|--|
| Red         | V <sub>cc</sub> | Power-supply voltage 4.5-5.5V (Typ.5V) |  |  |  |  |
| Brown       | Trigger         | External trigger input terminal        |  |  |  |  |
| Yellow      | OK              | External OK output terminal            |  |  |  |  |
| Orange      | NG              | External NG output terminal            |  |  |  |  |
| Black       | S-GND           |                                        |  |  |  |  |
| Gray        | RTS             |                                        |  |  |  |  |
| Blue        | CTS             |                                        |  |  |  |  |
| Green       | TxD             |                                        |  |  |  |  |
| White       | RxD             |                                        |  |  |  |  |
| (Black)     | Shield GND      | Heat shrinkable tube                   |  |  |  |  |


### Loose end Circuit



### 2.4 How to Read

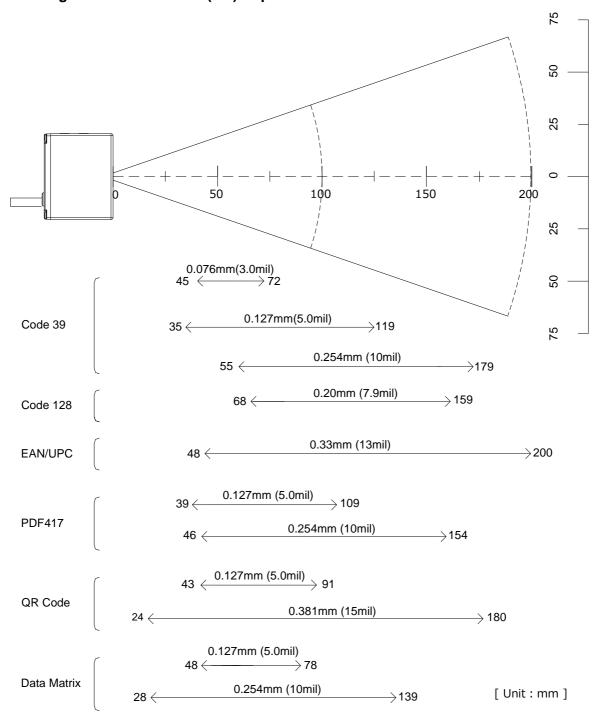
The scanner read target code by acquiring the image. Reading starts by the following method.


- 1. Send command trigger "Z" via serial communication. (RS-232C, USB-COM)
- 2. Turn ON external trigger input. (RS-232C loose end)
- 3. Detect target to read in auto trigger mode.
- 4. Press trigger key. (Used when testing and maintenance etc.)



### 2.5 Depth of Field and Focus Type

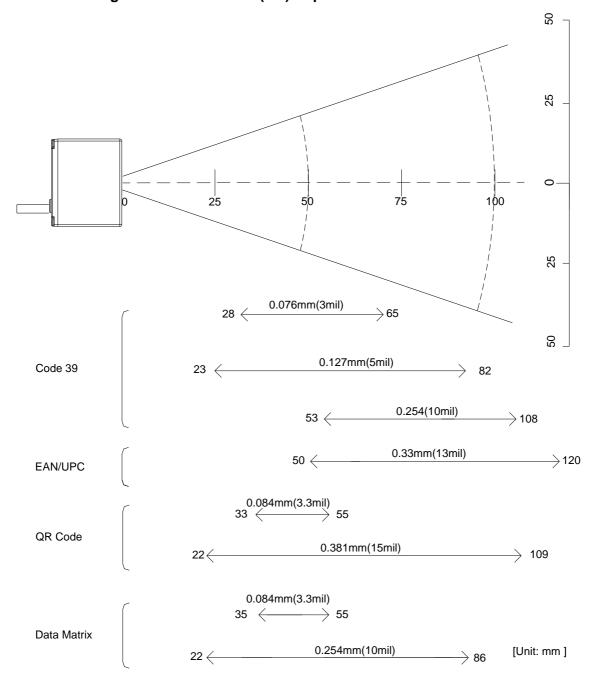
Select the focus type according to reading distance and code resolution.


### 2.5.1 Standard Model (SR) Depth of Field



<sup>\*</sup> The depth of field is the typical value measured by tilting the test chart 15° from the optical axis. (25C°)

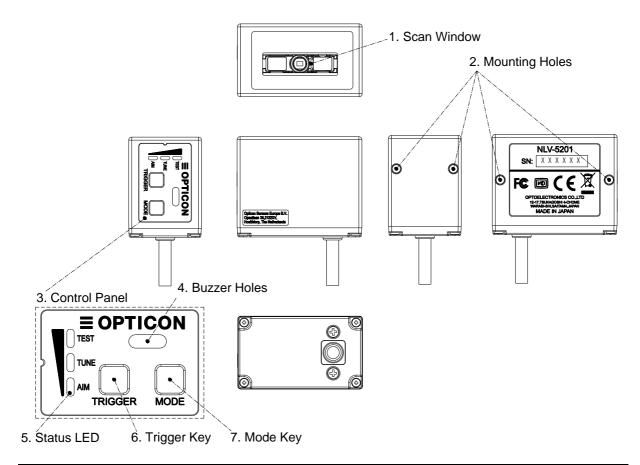
<sup>\*</sup> Refer to 11.2.2 Technical Specifications Standard Model Reading Depth of Field for specified value.


### 2.5.2 High Resolution Model (HD) Depth of Field



<sup>\*</sup> The depth of field is the typical value measured by tilting the test chart 15° from the optical axis. (25C°)

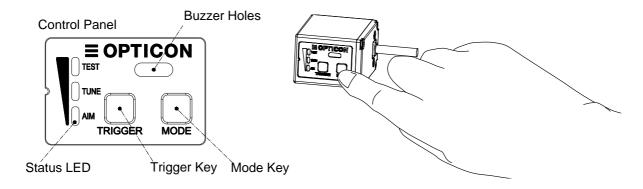
<sup>\*</sup> Refer to 11.2.2 Technical Specifications High Resolution Model (HD) Reading Depth of Field for specified value.


### 2.5.3 Ultra High Resolution model (UD) Depth of Field



<sup>\*</sup> The depth of field is the typical value measured by tilting the test chart 15° from the optical axis. (25C°)

<sup>\*</sup> Refer to 11.2.2 Technical Specifications Ultra High Resolution model (UD) Reading Depth of Field for specified value.


### 2.6 **Detailed View**



| No. | Name           | Description                                                                                                                                                                                                                                      |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Scan Window    | Light paths of the imager, LED illumination and aiming. Ensure that the lens is free from dust and dirt before scanning.                                                                                                                         |
| 2   | Mounting Holes | Screw holes that can be used to mount the scanner. Two holes on the bottom and side. Refer to the mechanical drawing for the mounting holes dimension.  The screw hole is M3, effective depth 3.5mm.                                             |
| 3   | Control Panel  | Control panel to execute Test mode, Tuning mode and Aiming mode. Can also select the bank.                                                                                                                                                       |
| 4   | Buzzer Holes   | Sound from a built-in buzzer comes out through these holes. When they are covered, the buzzer sound will be diminished. The sound varies depending on the settings. Buzzer sound settings are configurable for frequency, loudness and duration. |
| 5   | Status LEDs    | Indicates status by the combination of 3-color LEDs (red, orange, green).  Refer to 2.7.3 LED Indicator Specifications for detail.                                                                                                               |
| 6   | Trigger Key    | Default is trigger key. When selecting mode, it operates as execution key.                                                                                                                                                                       |
| 7   | Mode Key       | The key to select and cancel the mode. Shift to bank select mode by long press. Mode key can be disabled, refer to 3.3.9 for detail.                                                                                                             |

## 2.7 Operation Mode and Control Panel Description

Normally, the scanner is operated by serial communication control, but simple operation setting by the control panel is also available.



### 2.7.1 **Operation Mode**

| Mode name      | Mark | Description                                                                                                                                                                                                                                                                        |
|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal<br>mode | -    | Following are use as reading trigger in a readable state like operation.  Command trigger by serial communication (USB-COM/RS-232C)  External trigger signal (RS-232C)  Auto trigger  Trigger key                                                                                  |
| Test mode      | TEST | Used when testing the read rate. The read rate is displayed on the indicator LED every 10 times.                                                                                                                                                                                   |
| Tuning mode    | TUNE | When reading distance and the code to read is fixed, reading will stabilized by setting the optimum exposure.  When the tuning is successes, code limited and exposures setting etc. are registered to the current bank. Also, the reading rate is displayed on the LED indicator. |
| Bank           | -    | Area to register the exposure etc. adjusted in the tuning mode. 1-7 can be register to the bank, default is 1.                                                                                                                                                                     |
| Aiming mode    | AIM  | Aiming lights and if code can be read, displays whether the code is close to the center coordinate of the image sensor to LED indicator.                                                                                                                                           |

### 2.7.2 Control Panel Operation Specifications

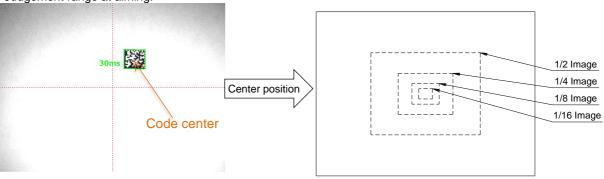
Operation specification of the control panel allocated on the side of housing are as follows.

|   | Indication      |                                                             | Trigger Key                            |                   | Title side of flousing are as follows.                                                                                                                                                                                                                                                     |  |  |  |
|---|-----------------|-------------------------------------------------------------|----------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   | ₹               | MODE                                                        | TRIGGER                                | Operation<br>Mode | Operation description                                                                                                                                                                                                                                                                      |  |  |  |
|   | TEST  TUNE  AIM |                                                             | Trigger Key<br>for reading             | Normal            | Normal operation status.                                                                                                                                                                                                                                                                   |  |  |  |
|   | TUNE AIM        | Press once<br>(within 2 sec)                                | Mode<br>transition by<br>pressing once | Test              | Used when testing the read rate. The read rate is displayed on the indicator LED every 10 times.                                                                                                                                                                                           |  |  |  |
|   | TUNE AIM        | Press twice<br>(within 2 sec)                               | Mode<br>transition by<br>pressing once | Tuning            | Tuning automatically perform optimum exposure setting etc. according to the read code. When the tuning is successes, the code is limited, and exposures setting etc. are registered to the curren bank. Also, the reading rate when tuning is successes is displayed on the LED indicator. |  |  |  |
|   | TUNE AIM        | Press 3 times<br>(within 2 sec)                             | Mode<br>transition by<br>pressing once | Aiming            | In the aiming mode, aiming lights and if code can<br>be read, displays whether the code is close to the<br>center coordinate of the image sensor to indicator<br>LED.                                                                                                                      |  |  |  |
| 2 |                 | Press 4 times<br>(within 2 sec)                             |                                        |                   |                                                                                                                                                                                                                                                                                            |  |  |  |
|   | TUNE            | Press<br>2 seconds<br>or more<br>(Press again<br>to select) | Mode<br>transition by<br>pressing once | Bank<br>selection | By pressing the mode key for more than 2 seconds, the bank currently used will be display on the LED. Pressing the mode key again, bank becomes selectable in order, and by pressing the trigger key, the bank displayed becomes effective.                                                |  |  |  |
|   | TUNE            |                                                             | conds,                                 | Initialize        | Pressing mode key and trigger key at same time for 5 seconds, it enters to the initialization standby. Initialized by pressing trigger key with that status, and initialization standby will be cancel by pressing mode key.                                                               |  |  |  |

### 2.7.3 **LED Indicator Specifications**

The status LED's indicate the reading result and USB communication status. In read rate mode, the reading success rate is indicated by these three 3-color LED's. Below is a more in-depth description on these LED's.

• Normal mode status LED indication


| Status         | Reading success | Waiting for USB communication | Communication/<br>Reading error |  |  |
|----------------|-----------------|-------------------------------|---------------------------------|--|--|
| LED indication | TEST  TUNE  AIM | TEST TUNE AIM                 | TEST TUNE AIM                   |  |  |

• "Test mode", "Tuning mode" and "Aiming mode" LED indication

Test and tuning display the reading rate for 10 times.

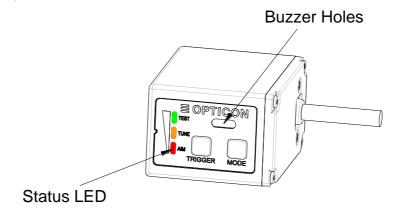
| rest and turnin    | g display the reading r | ate for to times. |                  |                   |
|--------------------|-------------------------|-------------------|------------------|-------------------|
| Reading rate       | 0 - 40 %                | 50 - 70 %         | 80 - 90%         | 100%              |
| Central coordinate | Within 1/2 image        | Within 1/4 image  | Within 1/8 image | Within 1/16 image |
| LED indication     | TEST  TUNE  AIM         | TEST TUNE AIM     | TUNE             | TUNE AIM          |

\*Judgement range at aiming.



### • "Bank. No." LED indication

The LED of the bank currently used will blink by pressing the mode key for more than 2 seconds.


| Bank No.       | No.1     | No.2          | No.3 No.4 |           | No.4 No.5 |           | No.7          |
|----------------|----------|---------------|-----------|-----------|-----------|-----------|---------------|
| LED indication | TUNE AIM | TEST TUNE AIM | TUNE      | TEST TUNE | TUNE AIM  | TEST TUNE | TEST TUNE AIM |

\* Status LED legend



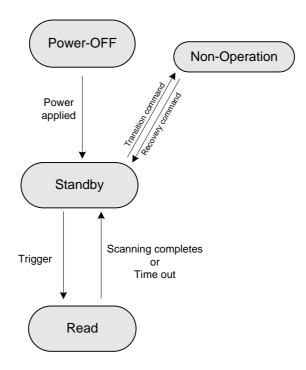
#### 2.7.4 Buzzer and LED Indicator

Buzzer sound and lighting color of LED indicates status of the scanner. The scanner status, buzzer sound and status LED are described as below.



| Item                                   | Rumble timing                                                                                                                                      | Tone interval                                       | LED color              | Enable/Disable                    |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|-----------------------------------|--|
| Start-up sound                         | When powered on.                                                                                                                                   | Low - Low middle 2 time -<br>Middle tone            | 3 color<br>Combination | Configurable (Default: Enable)    |  |
| Good read sound                        | When reading successes                                                                                                                             | Middle tone 1 time                                  | Light blue             | Configurable (Default: Enable)    |  |
| Data transmission error                | In USB, when connection is not established.                                                                                                        | (Middle - Middle low tone)<br>6 times               | Red                    | Enable (Fixed)                    |  |
| Batch reading<br>Intermediate<br>sound | When one code is read and if it does not yet meet the conditions to output data in batch reading or concatenated code reading.                     | Short High tone 1 time                              | None                   | Configurable<br>(Default: Enable) |  |
| Read timeout sound                     | When code is not read within the effective time period.                                                                                            | Low tone 2 times                                    | Red                    | Configurable (Default: Disable)   |  |
|                                        | When reading start ZZ menu code.                                                                                                                   | Middle - Middle low -<br>Middle high tone           | Yellow                 | Enable (Fixed)                    |  |
|                                        | When reading defined menu code.                                                                                                                    | Middle - Middle low -<br>Middle-high tone           | Yellow                 | Enable (Fixed)                    |  |
| 1D ZZ menu<br>Reading sound            | When reading not defined menu code.                                                                                                                | Low tone 2 times                                    | Red                    | Enable (Fixed)                    |  |
| Trodding Sound                         | When reading end ZZ menu code.                                                                                                                     | Middle - Middle low -<br>Middle-high tone           | Yellow                 | Enable (Fixed)                    |  |
|                                        | When save setting is complete                                                                                                                      | (Middle - Middle low -<br>Middle high tone) 3 times | None                   | Enable (Fixed)                    |  |
| 2D menu                                | When reading 2D menu code.                                                                                                                         | Middle - Middle low -<br>Middle high tone           | Yellow                 | Enable (Fixed)                    |  |
| Reading sound                          | When save setting is complete.                                                                                                                     | (Middle - Middle low -<br>Middle high tone) 3 times | None                   | Enable (Fixed)                    |  |
| High temperature protection mode       | If internal temperature exceeds a certain temperature, reading operation becomes disabled. While in this mode, it beeps with a 3 seconds interval. | High tone 2 times                                   | Orange                 | Enable (Fixed)                    |  |

<sup>\*</sup> Low: around 1000 Hz, Low middle: around 1000-2000 Hz, Middle low: around 2500 Hz, Middle: around 3000 Hz, Middle high: around 3500 Hz, High: around 4000Hz.

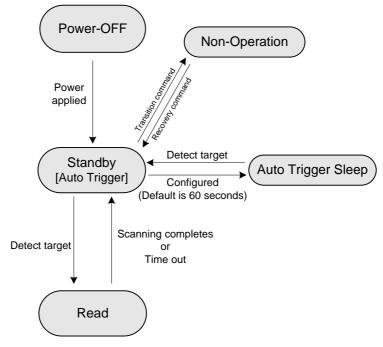

<sup>\*</sup> Refer to <u>4. Indicator</u> for setting detail.

\* Above is the definition of the representative status and does not indicate all of the operations.

## 2.8 **Operation Transition**

Following are the operation status transition of the scanner.

### 2.8.1 Normal Trigger



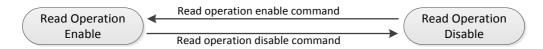

**Status Description** 

| Status                  | Description                                                                                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Read                    | Acquiring image and reading is in progress with the warm white LED and green aiming LED on.                                    |
| Standby                 | Can start reading by serial command, pushing side trigger or the external trigger input becomes active.                        |
| Reading operation stop* | The reading operation can be stopped by a successful decode, a stop command, or a timeout period after release of the trigger. |

<sup>\* &</sup>quot;Reading operation stop" is configured using commands. This cannot be done while using USB-HID interface.

### 2.8.2 Auto Trigger




**Status Description** 

| Status Description      |                                                                                                                 |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| Status                  | Description                                                                                                     |
| Read                    | Processes reading. Illumination fully ON                                                                        |
| Auto trigger standby    | When the target is within the scan area and detected, the scanner starts the reading mode. AIM pulses.          |
| Auto trigger sleep      | Auto-trigger mode will sleep after 60 seconds (default time). This sleep time can be re-configured or disabled. |
| Reading operation stop* | Operation of the scanner is stopped.                                                                            |

<sup>\* &</sup>quot;Reading operation stop" is configured using commands. This cannot be done while using USB-HID interface.

### 2.8.3 **Operation Invalid Transition Diagram**

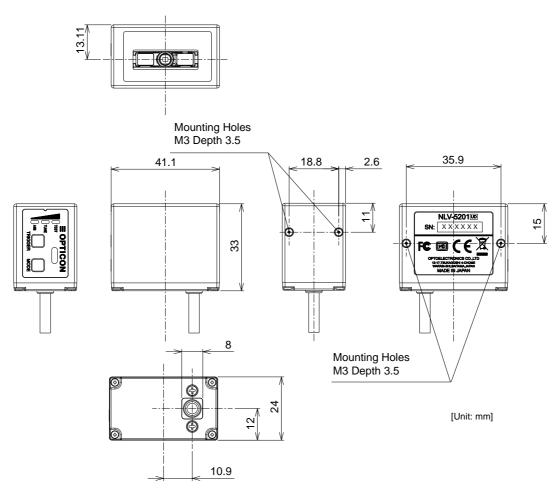
For USB-COM and RS-232C, scanner operation can be disabled by command's serial communication. When disabled, auto trigger operation becomes invalid.



Refer to 3.3.6 for setting command.

### 2.9 Installation of the Scanner

The installation of the scanner is described as below.


- · Mount the scanner using the assigned screw holes on the bottom or side.
- · Do not screw down further than the limitation of its depth.
- The scanner's anti-shock reliability is confirmed only in case impulse (acceleration) is applied via the contact surface. However, the scanner cannot withstand direct shock since it consists of precise optical elements.

NLV-5201 Installation

Recommend screw type: M3

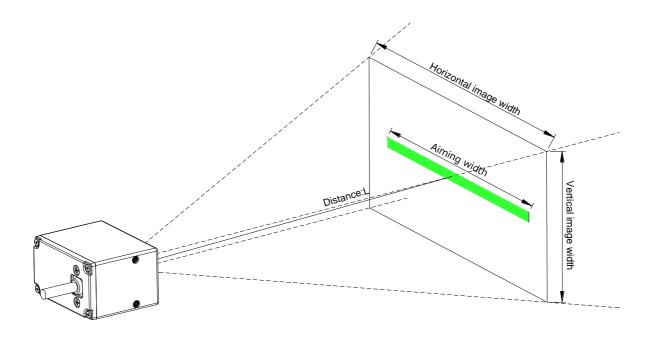
Recommend torque: Less than 20 Ncm.

Maximum screw depth: 3.5 mm from the mounting surface of the scanner.



Dimensions: Approx. 41.1 (W) x33.0 (H) x24.0 (D) Weight: Approx. 30 g (excluding cable)

Cable: 1.5 m


Please contact sales for 3D CAD data.

### 2.10 Scan Area

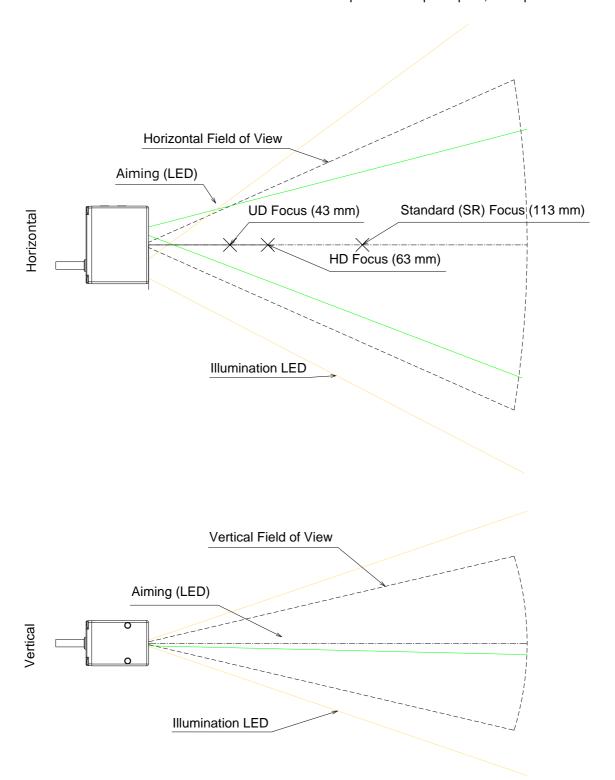
Image range is as follows.

### 2.10.1 Image Range

NLV-5201 image range is as follows. Install a frame with sufficient clearance for the field of view.



The range is  $\pm 5\%$  from the following values.


Image Range

| L: Distance from the front edge of scanner | [mm] | 40   | 60   | 80   | 100  | 120  | 140  | 160   | 180   |
|--------------------------------------------|------|------|------|------|------|------|------|-------|-------|
| Horizontal FOV                             | [mm] | 29.6 | 43.4 | 57.1 | 70.9 | 84.7 | 98.5 | 112.3 | 126.0 |
| Vertical FOV                               | [mm] | 22.1 | 32.4 | 42.7 | 53.0 | 63.3 | 73.6 | 83.9  | 94.2  |

<sup>\*</sup> The table above shows the field of view which should not be obstructed by any parts of a housing.

### 2.10.2 Optical Path

Install the Exit Window with sufficient clearance for the field of view, LED illumination and LED aiming. Provide the exit window with sufficient clearance with respect to the optical path, as depicted below.

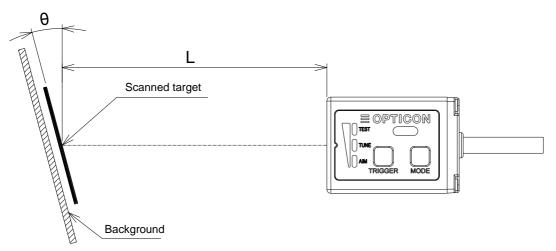


<sup>\*</sup>Obtain the image in the actual environment and evaluate it. The software tools for image capture can be found on the Opticon website.


### 2.11 Scanned Media and Placement

When an object is being scanned, there are conditions where specular reflection of the LED illumination and intense ambient light can occur easily.

### 2.11.1 Solution for Specular Reflection of the LED Illumination


### **Problem: Glossy label**

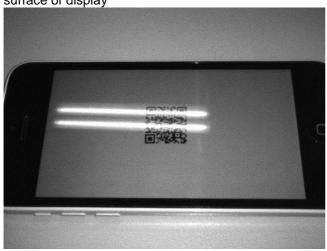
Specular reflection of the LED illumination from the scanner can occur when the target label is on a highly reflective surface.



#### Solution:

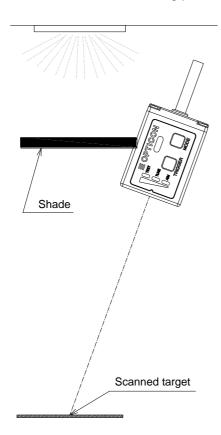
Specular reflection does not occur when an angle is created between the scanner and the target label as shown in the figure below. The conditions for the occurrence of specular reflection depend on the distance L and the inclination angle  $\theta$ . The recommended inclination angle is about 15 degrees. Note that as the angle becomes bigger, it becomes more difficult to read the target label.




<sup>\*</sup>For the background, use non-specular surface within the image range.

<sup>\*</sup>Obtain the image in the actual environment and evaluate it. The software tools for image capture can be found on the Opticon website.

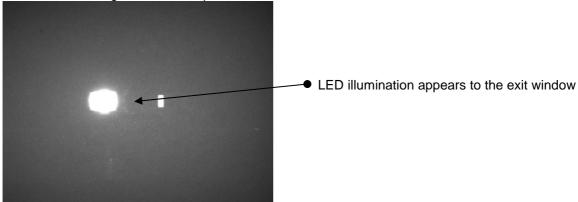
### 2.11.2 Solution for Specular Reflection of the External Illumination


### Problem: Label on metal, code on the display

Strong ambient light (fluorescent and sunlight) causes a specular reflection on metal surface or glass surface of display



#### Solution:


It is recommended to shield the reading position from strong ambient light.



<sup>\*</sup>Obtain the image in the actual environment and evaluate it. The software tools for image capture can be found on the Opticon website.

### 2.12 Exit Window Placement

LED illumination appears to the exit window depending on the exit window material and placement. The distance and angle limitation to prevent this are described below.



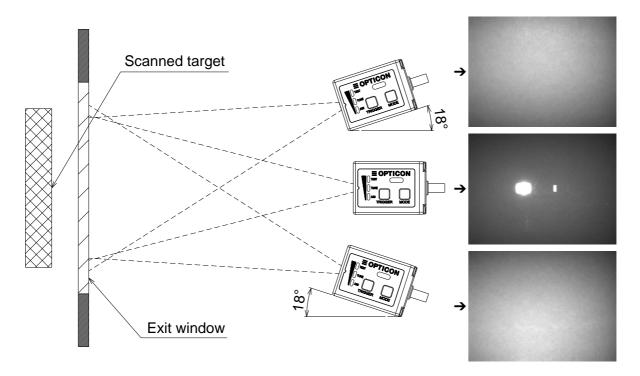
#### 2.12.1 Exit Window Material

Below is a list of recommendations for constructing the exit window. These recommendations help to prevent reflection from the LED illumination off the exit window and help to prevent degradation of the image by scratches and dirt.

- For the best optical quality, use an acrylic material (cast or extruded)
- Select a high-quality achromatic acrylic material with a smooth, flat surface without scratches and dents
- Use acrylic material with an anti-reflective (AR) coating applied to both sides.
- Apply an anti-scratch coating to the surface of the exit window to protect it from scratches during operation.
- Hard coated acrylic sheets are readily available. Such a coating greatly enhances anti-scratch properties without degrading the optical characteristics of the acrylic material.

Recommended acrylic material:

Nitto Jushi Kogyo Co., Ltd. Clarex Precision Thin Sheet


MITSUBISHI CHEMICAL CO., LTD. Shinkolite

### 2.12.2 Solution for Specular Reflection of the Illumination

Placement of the exit window has limitation on the distance and angle to prevent reflection of the LED illumination

To avoid the reflection of LED, tilt the scanner and exit window for about 18 degrees in vertically.

\* Obtain the image in the condition range to be used and design placement so that there is no reflection of the LED illumination.



<sup>\*</sup> Keep a minimum clearance between the scanner and the exit window of 1mm because of the dimensional tolerances of the mounting holes

<sup>\*</sup> Use of AR coated material for the exit window is recommended.

<sup>\*</sup> External light is not factored in.

<sup>\*</sup> Confirm that there is no reflection of the LED illumination off the exit window by acquiring images from the scanner.

# 3 Configurations

This chapter explains the scanner configuration, default setting and saving setting, and basic commands.

- 3.1 Configuring with Commands
- 3.2 Command Packet Sending Precautions
- 3.3 Basic Commands

### 3.1 Configuring with Commands

The scanner can be configured by sending commands via the serial interface or by reading 1D or 2D menu labels. This section describes the serial commands.

#### 3.1.1 Command Packet

The command packet, from header to terminator, is defined as below.


| Command Header*2 | Comma   | Command Terminator*2 |           |
|------------------|---------|----------------------|-----------|
| <esc></esc>      | None    | 1-2 digits (ASCII)   | <cr></cr> |
| (0x1B)           | [(0x5B) | 3 digits (ASCII)     | (0x0D)    |

<sup>\*1</sup> It is possible to send multiple command IDs between a single header and terminator, except for single digit IDs.

#### Input examples:

 $\begin{array}{lll} \mbox{1-digit command} & <\mbox{ESC} > \Delta < \mbox{CR} > \\ \mbox{2-digit command} & <\mbox{ESC} > \Delta \Delta < \mbox{CR} > \\ \mbox{3-digit command} & <\mbox{ESC} > [\Delta \Delta \Delta < \mbox{CR} > \\ \mbox{Two 2 digit command} & <\mbox{ESC} > \Delta \Delta \Delta \Delta < \mbox{CR} > \\ \mbox{2 and 3 digits command} & <\mbox{ESC} > \Delta \Delta [\Delta \Delta \Delta < \mbox{CR} > \\ \mbox{ESC} > \Delta \Delta [\Delta \Delta \Delta < \mbox{CR} > \\ \mbox{CR} > \\$ 

### Command can be sent via "UniversalConfig"

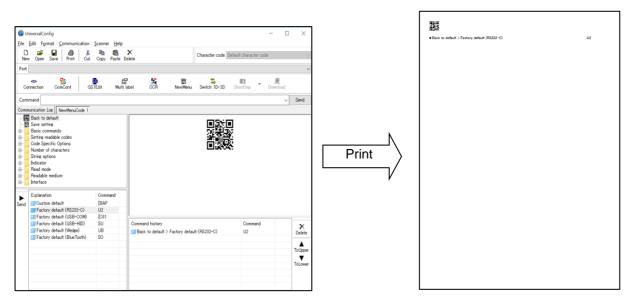




<sup>\*</sup> Commands entered in the "command:" box of this utility do not require the beginning command header <ESC>. The command or commands will be sent to the reader upon a ENTER key or a click of the [Send] button.

<sup>\*2</sup> A combination of command header <STX>(0x02) and terminator <ETX>(0x03) is also possible.

### 3.1.2 Configuring with 2D Menu


A single 2D menu code can contain multiple settings that will be processed in order, in one operation. Therefore, you can configure the scanner with multiple settings by reading only one 2D menu code. Scanning a 2D menu code will always perform a 'save settings' upon completion, so a Z2 command to save current settings is not needed.

#### Data Packet:

@MENU\_OPTO@ZZ@MenuCommand 1@MenuCommand 2@ZZ@OTPO\_UNEM@

| "@MENU_OPTO"       | (Start key)  |                         |
|--------------------|--------------|-------------------------|
| "@"                | (Separator)  |                         |
| "ZZ"               | (Start menu) |                         |
| "@"                | (Separator)  | Multiple sets allowed   |
| "Any menu command" | (U2 etc)     | ← Multiple sets allowed |
| "@"                | (Separator)  |                         |
| "ZZ"               | (END menu)   |                         |
| "@"                | (Separator)  |                         |
| "OTPO_UNEM@"       | (Stop key)   |                         |

• 2D menu code can be created at "UniversalConfig".

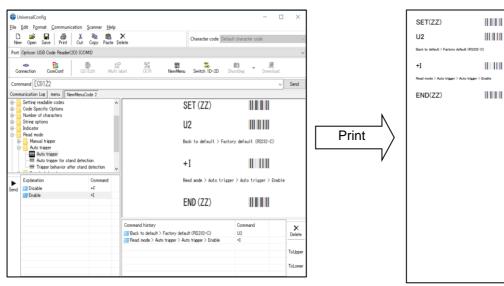


<sup>\*</sup>Please contact sales offices for the tools.

### 3.1.3 Configuring with 1D Menu Code

By scanning a series of 1D menu codes specially designed to configure the required functions, you can set up the scanner to optimize its performance for your particular application.

The basic procedures are as follows:

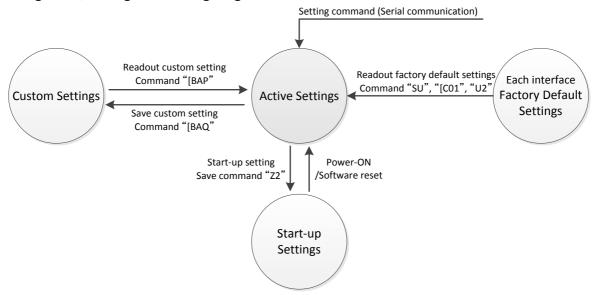

Scan SET menu code (ZZ). The scanner now enters menu mode.

Scan one or more desired options.

Multiple menu codes can be read when you want to configure more than one option.

Read END menu code (ZZ). All the settings are saved in non-volatile memory.

- \* 1D Menu codes encode an ID consisting of two to five alphanumeric characters. 1D Menu codes are Code39 labels with modified start/stop characters and therefore the scanner will not acknowledge a 1D menu code as a normal barcode.
- Menu barcode can be created at "UniversalConfig".




<sup>\*</sup>Please contact sales offices for the tools.

### 3.2 Command Packet Sending Precautions

Following are the scanner setting method.

### Setting value, writing and reading diagram



\* Menu barcode and 2D menu code setting are always saved in "Startup setting".

Active Settings Settings that is currently active.

(Including newly added settings from power on)

Startup Settings The setting to be read when power is turned on.

Custom Settings Custom setting to be saved on another memory area.

Factory Default Settings Default setting is the same as the initial setting described in this manual.

Various interfaces require switching setting.

### 3.2.1 Each interface Default Setting

The Active Settings can be returned to the factory default settings. Set the command that corresponds to the interface being used.

| Item     | Command | Interface | Description                                 | Remark |
|----------|---------|-----------|---------------------------------------------|--------|
| Factory  | SU      | USB-HID   | Restore USB-HID to factory default settings |        |
| Default  | [C01    | USB-COM   | Restore USB-COM to factory default settings |        |
| Settings | U2      | RS-232C   | Restore RS-232C to factory default settings |        |

<sup>\*</sup> When updating the firmware, status of interface will remained, but "Startup setting" and "Custom setting" will be initialized.

### 3.2.2 Save Settings

The Active Settings can be written into the "Startup Settings".

| Item          | Command | Description                                  | Remark       |
|---------------|---------|----------------------------------------------|--------------|
| Save settings | Z2      | Save the Active Settings as Startup Settings | Command only |

<sup>\*</sup> Place "Z2" at the end of command packet to be saved.

### 3.2.3 Custom Setting

| Item            | Command | Description              | Remark |
|-----------------|---------|--------------------------|--------|
| Custom settings | [BAP    | Read out Custom Settings |        |
| Custom settings | [BAQ    | Save to Custom Settings  |        |

<sup>\*</sup> Saving settings for more than 30,000 times may destroy memory. Avoid saving every time.

\* There are options that will not be enabled until "Save settings" is sent, such as baud rate setting.

<sup>\*</sup> Place "[BAQ" at the end of command packet to be saved.
\* To save both "Custom settings" and "Active Settings" at same time, send "[BAQZ2".

<sup>\*</sup> Custom settings for more than 30,000 times may destroy memory. When setting frequently, avoid saving every

### 3.3 Basic Commands

Following are the basic commands for the scanner.

#### 3.3.1 ACK/NAK for Serial Commands

When "ACK/NAK for serial commands" is enabled, the scanner will send an ACK (0x06) when a command is received and accepted, and a NAK (0x15) when a command is rejected.

| Item    | Command | Description                         | Default |
|---------|---------|-------------------------------------|---------|
| ACK/NAK | WC      | Enable ACK/NAK for serial commands  |         |
| ACK/NAK | WD      | Disable ACK/NAK for serial commands | ✓       |

### 3.3.2 **Diagnostic Commands**

These commands can be used to get diagnostics information from the scanner.

| Item        | Command | Description                     | Remark |
|-------------|---------|---------------------------------|--------|
|             | Z1      | Transmit software version       |        |
| Diagnostics | ZA      | Transmit ASCII printable string |        |
|             | YV      | Transmit ASCII control string   |        |

#### 3.3.3 Enable/Disable 2D Menu Code

To enable/disable the processing of 2D menu codes, use the settings below.

Setting 'Disable 2D menu codes' is recommended when 2D menu codes are not used.

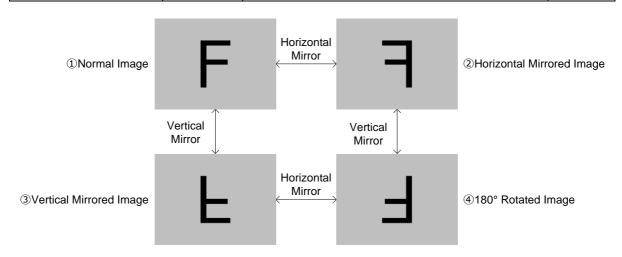
| Item           | Command | Description           | Default |
|----------------|---------|-----------------------|---------|
| Enable/Disable | [D1Y    | Enable 2D menu code   | ✓       |
| 2D menu code   | [D1Z    | Disable 2D menu code* |         |

<sup>\*</sup> Indicates reading 2D menu code as normal 2D code. Therefore, 2D menu code data will be output when reading success.

### 3.3.4 Enable/Disable 1D Menu Code

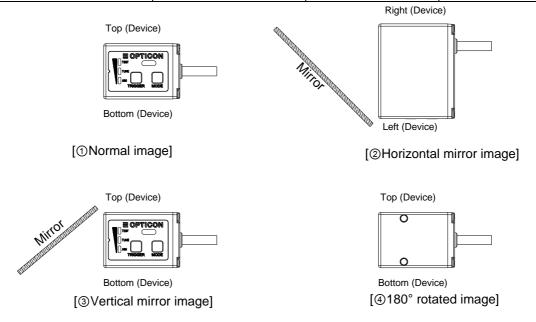
To enable/disable the decoding of 1D menu codes, use the settings below. Setting 'Disable 1D menu codes' is recommended when 1D menu codes are not used.

| Item           | Command |    | nd | Description                                          | Default  |
|----------------|---------|----|----|------------------------------------------------------|----------|
|                |         | Q0 | Q1 | Enable when using trigger key.                       | <b>✓</b> |
|                |         | Q0 | Q0 | Disable when using trigger key.*                     |          |
| Enable/Disable | וחבם    | Q1 | Q1 | Enable when using external trigger signal.           |          |
| 1D menu code   | [DFB    | Q1 | Q0 | Disable when using external trigger signal.*         | ✓        |
|                |         | Q2 | Q1 | Enable when using command trigger or auto trigger.   |          |
|                | Q       | Q2 | Q0 | Disable when using command trigger or auto trigger.* | ✓        |


<sup>\*</sup> Indicates that 1D menu code reading is prohibited.

### 3.3.5 Image Settings

When the scanner is mounted upside down, it should rotate the sensor data by 180°. This configuration is required especially for image acquisition and OCR reading.


When an external mirror is installed in front of the scan engine, the scanner should mirror the sensor data. Two options are available for that, horizontal mirror and vertical mirror.

| Item                | Command | Description                                     | Default |
|---------------------|---------|-------------------------------------------------|---------|
| Horizontal mirrored | [EFU    | Disable horizontal mirrored image configuration | ✓       |
| image               | [EFV    | Enable horizontal mirrored image configuration  |         |
| Vertical mirrored   | [E8J    | Disable vertical mirrored image configuration   | ✓       |
| image               | [E8I    | Enable vertical mirrored image configuration    |         |



Configuration commands

| Style                     | Commands | Horizontal mirror | Vertical mirror |
|---------------------------|----------|-------------------|-----------------|
| ① Normal image            | [EFU[E8J | Disable           | Disable         |
| ② Horizontal mirror image | [EFV[E8J | Enable            | Disable         |
| ③ Vertical mirror image   | [EFU[E8I | Disable           | Enable          |
| ④ 180° rotated image      | [EFV[E8I | Enable            | Enable          |



### 3.3.6 **Disable Reading Operation**

To enable/disable the processing of reading, use the settings below.

Auto trigger become invalid by setting this disable reading. In this setting, menu labels cannot be read, only commands via serial communication are supported.

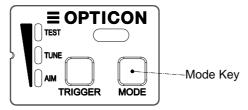
| Item              | Command | Description                      | Default | Remark       |
|-------------------|---------|----------------------------------|---------|--------------|
| Enable/Disable    | [EAT    | Enable module reading operation  | ✓       | Command only |
| Reading operation | [EAU    | Disable module reading operation |         | Command only |

### 3.3.7 Buzzer and Indicator

These commands reflect "4.1.1 Buzzer" and "4.1.2 Good Read Buzzer".

| 11000 COMMINICATION CO. 1.1.1 Buzzon and 1.1.2 Coca Moda Buzzon. |                            |                            |              |  |  |  |
|------------------------------------------------------------------|----------------------------|----------------------------|--------------|--|--|--|
| Item                                                             | Command                    | nmand Description          |              |  |  |  |
| Buzzor                                                           | B Sound the good read beep |                            |              |  |  |  |
| Buzzer                                                           | E                          | Sound the error beep       | Command only |  |  |  |
| Status LED                                                       | L                          | Flash the status LED       | Command only |  |  |  |
|                                                                  | N                          | Flash the error status LED |              |  |  |  |

### 3.3.8 Reboot the Scanner


Use this command to restart the scanner.

| Item            | Command | Description        | Remark |
|-----------------|---------|--------------------|--------|
| Software reboot | RV      | Reboot the scanner |        |

### 3.3.9 Enable/Disable Mode Key

| Item           | Comm            | and | Description      | Default |
|----------------|-----------------|-----|------------------|---------|
| Enable/Disable | able [EHB Q0 Q1 |     | Disable mode key |         |
| Mode key       |                 |     | Enable mode key  | ✓       |

#### Control Panel



### 3.3.10 Direct Numerical Input Command

When a command requires additional numerical input, the commands below can be used. Use these in one packet together with the command that requires the numerical input.

| Item             | Command | Description | Remark           |
|------------------|---------|-------------|------------------|
|                  | Q0      | 0           |                  |
|                  | Q1      | 1           |                  |
|                  | Q2      | 2           |                  |
|                  | Q3      | 3           | l                |
| Direct input     | Q4      | 4           | Input in a       |
| numerical values | Q5      | 5           | specified format |
|                  | Q6      | 6           |                  |
|                  | Q7      | 7           |                  |
|                  | Q8      | 8           |                  |
|                  | Q9      | 9           |                  |

# **4 Indicator Options**

This chapter describes the options for Buzzer and Good Read LED.

- 4.1 Buzzer
- 4.2 Status LED
- 4.3 Good Read Aiming
- 4.4 Indicator in General

### 4.1 Buzzer

Buzzer operation settings are described below.

### 4.1.1 Buzzer Loudness

The buzzer loudness can be set with these options, which is applied to all buzzers.

| Item            | Command | Description               | Default |
|-----------------|---------|---------------------------|---------|
| Buzzer loudness | T0      | Buzzer loudness : Maximum | ✓       |
|                 | T1      | Buzzer loudness : Loud    |         |
|                 | T2      | Buzzer loudness : Normal  |         |
|                 | Т3      | Buzzer loudness : Minimum |         |

### 4.1.2 Good Read Buzzer

The good read buzzer is activated when a code is successfully read and the data is output. 3 types of tone and 5 types of duration are configurable. The good read buzzer can also be disabled.

#### • Buzzer Disable/Enable

| Item                     | Command | Description    | Default |
|--------------------------|---------|----------------|---------|
| Buzzer<br>Disable/Enable | W0      | Disable buzzer |         |
|                          | W8      | Enable buzzer  | ✓       |

#### • Buzzer duration

| Item            | Command | Description             | Default |
|-----------------|---------|-------------------------|---------|
|                 | W7      | Buzzer duration: 50 ms  | ✓       |
|                 | [EFW    | Buzzer duration: 75 ms  |         |
| Buzzer duration | W4      | Buzzer duration: 100 ms |         |
|                 | W5      | Buzzer duration: 200 ms |         |
|                 | W6      | Buzzer duration: 400 ms |         |

#### • Buzzer tone

| Item            | Command | Description                        | Default |
|-----------------|---------|------------------------------------|---------|
|                 | W1      | Middle frequency buzzer (3000 Hz)  |         |
| Buzzer tone (*) | W2      | 2 steps buzzer (high - low buzzer) | 2600 Hz |
|                 | W3      | 2 steps buzzer (low - high buzzer) |         |

<sup>\*</sup> The good read buzzer tone (frequency) can be set with numerical parameters by inputting the command followed by a 4-digit numerical command.

Frequency range normally use is 2000 to 4000 Hz. The scanner most resonance around 2750 Hz.

| Item                          | Command |    |    |    |    | Description                                                       | Default             |
|-------------------------------|---------|----|----|----|----|-------------------------------------------------------------------|---------------------|
| Buzzer tone frequency setting | [DF0    | Qa | Qb | Qc | Qd | Numerical setting of buzzer tone frequency (1000a+100b+10c+d)[Hz] | 2600 Hz<br>(1-9999) |

### 4.1.3 Start-up Buzzer

This setting determines whether the scanner emits a beep when it is powered on.

| Item           | Command                   | Command Description   |   | Remark                 |
|----------------|---------------------------|-----------------------|---|------------------------|
| Stortup buzzor | GD Disable startup buzzer |                       |   | Enabled only with "Z2" |
| Startup buzzer | GC                        | Enable startup buzzer | ✓ | Enabled only with "Z2" |

#### 4.1.4 Read Timeout Buzzer

In case a code is not read within the timeout period, an error buzzer sounds when the read operation ends.

| Item         | Command | Description                 | Default |
|--------------|---------|-----------------------------|---------|
| Read timeout | [EAP    | Disable read timeout buzzer | ✓       |
| buzzer       | [EAQ    | Enable read timeout buzzer  |         |

#### 4.1.5 Intermediate Buzzer

When one code is decoded, an intermediate buzzer sounds to indicate that the code is decoded but it does not yet meet the conditions to output data.

For instance, suppose five-codes reading is set in buffer mode, the intermediate buzzer then sounds after the decoding of the 1st, 2nd, 3rd and 4th code and a good read buzzer finally sounds when the last code is decoded after which the data is output. The data is not output when the 1st to 4th codes are decoded but reading of each code can be confirmed by the intermediate buzzer. When the good read buzzer is disabled, this setting will be forcibly disabled.

| Item                | Command              |    | Description                 | Default |
|---------------------|----------------------|----|-----------------------------|---------|
| Intermediate buzzer | iate buzzer   [EBY - | Q0 | Disable intermediate buzzer |         |
|                     | [ED1                 | Q1 | Enable intermediate buzzer  | ✓       |

<sup>\*</sup> Intermediate buzzer frequency: 5000 Hz (5 KHz), duration: 10 ms

### 4.2 Status LED

Each status LED operation settings are described below.

### 4.2.1 Status LED Lighting Time

The status LED lights up after a code was successfully decoded and the data was output. This can be disabled or set for several durations.

| dicabled of oct for coveral durationer |         |                            |         |  |
|----------------------------------------|---------|----------------------------|---------|--|
| Item                                   | Command | Description                | Default |  |
|                                        | T4      | Disable indicator          |         |  |
|                                        | [XT8    | Indicator duration: 100 ms |         |  |
| Status LED                             | T5      | Indicator duration: 200 ms | ✓       |  |
|                                        | T6      | Indicator duration: 400 ms |         |  |
|                                        | T7      | Indicator duration: 800 ms |         |  |

## 4.3 Good Read Aiming

The green aiming lights up after a code was successfully read.

Aiming indicator frequency and indicator durations after reading are configurable.

| Item      | Command |    | Function | Description | Default            |                                                                |                             |
|-----------|---------|----|----------|-------------|--------------------|----------------------------------------------------------------|-----------------------------|
|           | [EF3    | Qa | Qb       | Qc          |                    |                                                                |                             |
| Good Read |         | а  |          |             | Setting<br>items   | 0:Indicator frequency 1:First indicator duration after reading |                             |
| Aiming    |         |    | b        |             | Numerical          | Indicator frequency<br>00-99 times                             | Indicator frequency 0 time  |
|           |         |    |          | С           | setting<br>10b + c | Indicator duration<br>00-99 x10 ms                             | Indicator duration<br>50 ms |

Setting example)

- Lights 2 times (After 100 ms: Default)

Command: [EF3Q0Q0Q2

- Set first indicator duration after reading to 500 ms Continue to above indicator frequency setting

Command: [EF3Q1Q5Q0

### 4.4 Indicator in General

Common settings for each indicator are described below.

### 4.4.1 Indicator Timing

The indicators can be activated after decoding a code and before or after transmitting the data.

| Item             | Command | Description              | Default | Remark              |
|------------------|---------|--------------------------|---------|---------------------|
| Indicator timing | VY      | Before data transmission | ✓       | soon after decoding |
|                  | VZ      | After data transmission  |         |                     |

# 5 Interface

The scanner support RS-232C, USB-COM and USB-HID interface. This chapter explains each interface in detail.

- **5.1** RS-232C
- **5.2** <u>USB-HID</u>
- **5.3** <u>USB-COM</u>
- **5.4** Common Settings

## 5.1 **RS-232C**

This chapter explains RS-232C interface settings.

| 5.1.1 | RS-232C Basic Information       |
|-------|---------------------------------|
| 5.1.2 | Baud Rate (Transfer Speed)      |
| 5.1.3 | Character Format                |
| 5.1.4 | Handshaking (Flow Control)      |
| 5.1.5 | Inter Character Delay (RS-232C) |
| 5.1.6 | Trouble Shooting (RS-232C)      |

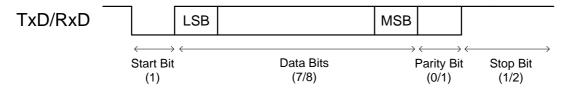
### 5.1.1 RS-232C Basic Information

Following are the RS-232C interface basic information.

| Item           | Description                         | Default  |
|----------------|-------------------------------------|----------|
| Transfer speed | 300 to 115200 bps                   | 9600 bps |
| Data length    | 7/8 bits                            | 8 bit    |
| Parity bit     | None/Even/Odd                       | None     |
| Stop bit       | 1/2 bits                            | 1 bit    |
| Handshake      | None, BUSY/READY, Modem, ACK/NAK    | None     |
| Other option   | Flow control, Inter character delay |          |

### 5.1.2 Baud Rate (Transfer Speed)

The baud rate is the rate at which bits are transmitted from the scanner to the host and vice versa. Both the scanner and the host must be set to the same baud rate.


The following commands can be used to configure the baud rate. "Z2" (safe settings in non-volatile

memory) needs be used after these commands to activate and save the new configuration.

| Item      | Command | Description | Default | Remark            |
|-----------|---------|-------------|---------|-------------------|
|           | K1      | 300 bps     |         |                   |
|           | K2      | 600 bps     |         |                   |
|           | K3      | 1200 bps    |         |                   |
| Do Lote   | K4      | 2400 bps    |         |                   |
|           | K5      | 4800 bps    |         | Enabled only with |
| Baud rate | K6      | 9600 bps    | ✓       | "Z2"              |
|           | K7      | 19200 bps   |         |                   |
|           | K8      | 38400 bps   |         |                   |
|           | K9      | 57600 bps   |         |                   |
|           | SZ      | 115200 bps  |         |                   |

#### 5.1.3 Character Format

The data characters are transferred in the format shown below. A party bit is added to every character so that the total number of 1's in the data bits, together with the parity bit, is odd for odd parity and even for even parity.

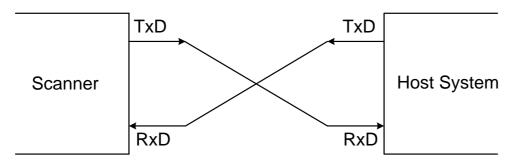


The following commands are provided to set the number of data bits, type of parity bit and the number of stop bits. The Z2 command (save settings in non-volatile memory) needs be used after these commands to activate and save the new configuration.

| Item       | Command | Description | Default | Remark                     |
|------------|---------|-------------|---------|----------------------------|
| Data bit   | L0      | 7 data bits |         |                            |
|            | L1      | 8 data bits | ✓       |                            |
| Parity bit | L2      | No parity   | ✓       |                            |
|            | L3      | Even parity |         | Enabled after sending "Z2" |
|            | L4      | Odd parity  |         |                            |
| Stop bit   | L5      | 1 stop bit  | ✓       |                            |
|            | L6      | 2 stop bits |         |                            |

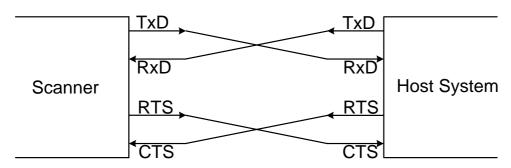
### 5.1.4 Handshaking (Flow Control)

The communication control method can be set using these commands.

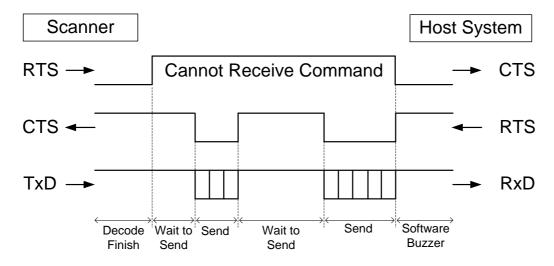

"Z2" (save command in non-volatile memory) needs be used after these commands to activate and save the new configuration.

| Item        | Command | Description         | Default | Remark                     |
|-------------|---------|---------------------|---------|----------------------------|
|             | P0      | No handshake        | ✓       |                            |
|             | P1      | Busy/ready          |         |                            |
| Handshaking | P2      | Modem               |         | Enabled after sending "Z2" |
|             | P3      | ACK/NAK             |         |                            |
|             | P4      | ACK/NAK NO RESPONSE |         |                            |

#### A) No Handshaking


The scanner communicates regardless of the state of the host system.

\* In this setting, the commands from the host system may not be received correctly.




#### B) BUSY/READY

The scanner and the host system notify each other when they are ready to receive data (BUSY/READY) via their RTS line. When they are connected as shown in the figure below, the CTS line can be used to check if the other side is busy (off) or ready to receive data (on).



The scanner's RTS is normally on (so ready to receive data) except during the processing of received data, while transmitting data, and while it is busy processing 1D/2D menu codes. When the scanner wants to send data, it first will check if its CTS line is on (to be sure that the host is ready to receive data). If the CTS line is off, the scanner does not send the data but waits for a specific timeout period for the CTS line to be tuned on. If the CTS line is not turned on within the time specified, the data transmission will be aborted.

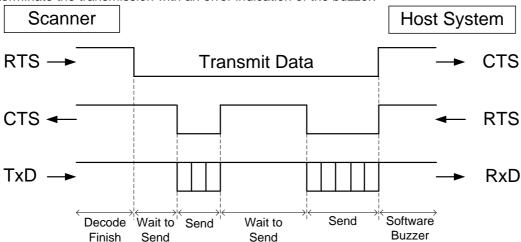


### <CTS, TxD signal timing>

When the CTS line (RTS signal on the host side) is turned off during a TxD signal transmission, the scanner stops the transmission. When the CTS signal is turned on during signal transmission, characters will be transmitted.



The following menu codes / commands are provided for the CTS line timeout setting.


"Z2" (save settings in non-volatile memory) needs be used after these commands to activate and save

| the | new | configuration. |
|-----|-----|----------------|
|     |     |                |

| Item         | Command                           | Description                 | Default                | Remark               |
|--------------|-----------------------------------|-----------------------------|------------------------|----------------------|
| 10<br>CTS 11 | Flow Control timeout Indefinitely |                             |                        |                      |
|              | Flow Control timeout 100 ms       |                             | Enabled only with "Z2" |                      |
| timeout      | 12                                | Flow Control timeout 200 ms |                        | Enabled Only With 22 |
|              | 13                                | Flow Control timeout 400 ms |                        |                      |

#### C) MODEM

The scanner's RTS is OFF as soon as power is supplied to the scanner. The scanner will turn RTS ON when it wants to transmit data to the host. The host should respond with CTS ON when it is ready to receive data. While the host CTS is ON the scanner is allowed to transmit data. When all data has been transmitted, the scanner will turn RTS OFF. In response, the host should turn OFF the scanner's CTS. If, while RTS is ON, the CTS line is not ON for a certain configurable period, the scanner will terminate the transmission with an error indication of the buzzer.

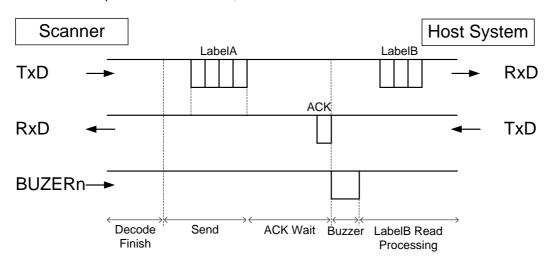


### D) ACK/NAK Control

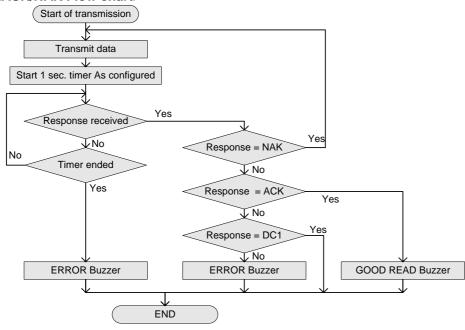
In ACK/NAK mode, the scanner will transmit data and expects to receive one of the following responses from the host:

Response: "ACK" (ASCII:0x06)

The scanner terminates transmission with the good-read buzzer.


Response: "NAK" (ASCII:0x15) The scanner sends the data again.

Response: "DC1" (ASCII:0x11)


The scanner terminates transmission without the good-read or error buzzer.

#### Timeout

If there is no response within 1second, the scanner terminates transmission with the error buzzer.



#### <ACK/NAK Flow chart>



The following commands are provided for the setting ACK/NAK timeout.

| Item            | Command | Description                  | Default |
|-----------------|---------|------------------------------|---------|
| ACK/NAK timeout | [XI4    | ACK/NAK timeout Indefinitely |         |
|                 | [XI5    | ACK/NAK timeout 100 ms       |         |
|                 | [XI6    | ACK/NAK timeout 500 ms       |         |
|                 | [XI7    | ACK/NAK timeout 1 s          | ✓       |

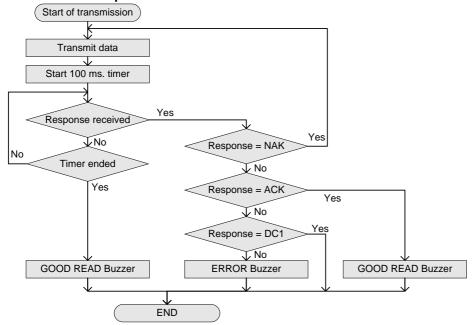
### E) ACK/NAK No Response

The difference from the ACK/NAK mode is that when no response from the host is received within 100ms, the scanner assumes that the data has been received correctly by the host.

Response: "ACK" (ASCII:0x06)

The scanner terminates transmission with the good-read buzzer.

Response: "NAK" (ASCII:0x15)
The scanner sends the data again.


Response: "DC1" (ASCII:0x11)

The scanner terminates transmission without a good-read or error buzzer.

#### Timeout

If there is no response within 100 ms then the scanner terminates transmission with the good read buzzer.

### <ACK/NAK No Response Flow Chart>



### 5.1.5 Inter Character Delay (RS-232C)

The inter character delay introduces a configurable delay after each transmitted character. This may be used if the host does not support flow control and is not capable of handling the received data.

The following menu codes / commands are provided for the inter character delay setting.

| Item                     | Command | Description  | Default | Remark                    |  |
|--------------------------|---------|--------------|---------|---------------------------|--|
| Inter character<br>delay | KA      | No delay     | ✓       |                           |  |
|                          | KB      | 20 ms delay  |         | Activated only after "Z2" |  |
|                          | KC      | 50 ms delay  |         | Activated only after 22   |  |
|                          | KD      | 100 ms delay |         |                           |  |

### 5.1.6 Trouble Shooting (RS-232C)

Following are the several countermeasures for the trouble caused by RS-232C

| Behavior              | Check points / Countermeasures                                                                                                     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Cannot communicate    | •Confirm communication settings ( <u>5.1.2 transfer speed</u> , <u>5.1.3 character format etc.</u> )                               |
| No response when      | •After changing communication setting, send Z2 command. Most of communication settings are not reflected until Z2 command is sent. |
| sending command       | •Confirm <u>5.1.4 handshake</u> setting.                                                                                           |
|                       | •Confirm communication settings ( <u>5.1.2 transfer speed</u> , <u>5.1.3 character format etc.</u> )                               |
| Garbled characters    | •Set the <u>5.1.5 inter-character delay</u> according to the host PC's processing speed.                                           |
|                       | •Confirm that code to be read matches to the character code of the communication tool.                                             |
| Line-break is doubled | Check the line-break setting of the communication tool.                                                                            |

# 5.2 **USB-HID**

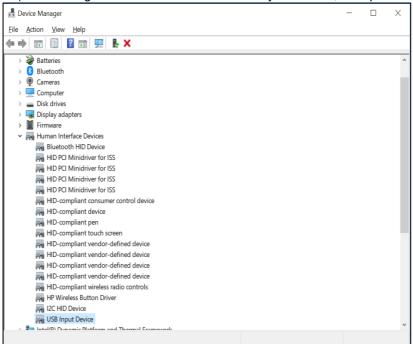
This chapter explains USB-HID interface settings.

| 5.2.1 | USB-HID Basic Information         |
|-------|-----------------------------------|
| 5.2.2 | Connection Confirmation (USB-HID) |
| 5.2.3 | NumLock CapsLock control          |
| 5.2.4 | Data Output Speed (USB-HID)       |
| 5.2.5 | Inter Character Delay (USB-HID)   |
| 5.2.6 | Keyboard Language                 |
| 5.2.7 | Trouble Shooting (USB-HID)        |

### 5.2.1 **USB-HID Basic Information**

Basic information for USB-HID interface is as follows.

| Items                                          | Description                                  | Notes                                            |
|------------------------------------------------|----------------------------------------------|--------------------------------------------------|
| USB                                            | USB2.0 Full Speed                            |                                                  |
| Required power supply capacity                 | 500 mA                                       | Differs from actual power consumption.           |
| Vendor ID                                      | 065A                                         |                                                  |
| Product ID                                     | A002                                         |                                                  |
| NumLock/CapsLock control                       | Set when using NumLock/CapsLock              | Initial value: No control                        |
| Data transmit speed                            | Use when outputting data with high speed.    | Initial setting: 4 ms (Setting range 1 ms-16 ms) |
| Data transmit interval (Inter-character delay) | Use when data is missing.                    | Initial value: no interval                       |
| Suspend mode<br>Remote wakeup                  | Use when host system is using suspend.       | Initial value: Valid                             |
| Keyboard language                              | Set according to the keyboard language.      | Initial value: English (USA)                     |
| Character code                                 | Set according to reading symbol encode data. | Initial value: not use character code            |
| Output mode                                    | Set when outputting Chinese-character.       | Initial value: output as it is                   |


### 5.2.2 Connection Confirmation (USB-HID)

USB-HID operate just by connecting to the computer. Following are the procedure to confirm connection.

#### For Windows 10

- 1. Connect the scanner to the PC.
- 2. Right-click "Windows icon" and select "Device Manager".
- 3. Open "Human interface device". "USB input device" is added.

(When using USB connection mouse or keyboard etc., multiple devices will be displayed.)



### 5.2.3 NumLock CapsLock control

Set NumLock and CapsLock control method when sending data.

| Item             | Command | Command description                       | Initial setting | Notes |
|------------------|---------|-------------------------------------------|-----------------|-------|
|                  | RN      | Numeric value does not use numeric keypad | ✓               |       |
| NumLock control  | RM      | Numeric value use numeric keypad          |                 |       |
|                  | /A      | Follow NumLock status                     |                 | *1    |
|                  | 5Q      | No control                                | ✓               |       |
| CapsLock control | 8A      | Invert CapsLock status                    |                 | *2    |
|                  | 2U      | CapsLock automatic control                |                 | *3    |

<sup>\*1.</sup> Only use numeric keypad when NumLock is ON.

<sup>\*2.</sup> When starting transmits, send CapsLock and invert status. Use when CapsLock is always ON. Return to CapsLock status when sending is completed.

<sup>\*3.</sup> Control CapsLock status to display as the original string. Return to original CapsLock status when transmit is complete.

### 5.2.4 Data Output Speed (USB-HID)

Adjust data output speed in USB-HID. Selecting shorter time will make output faster, but depend on host system, outputting all character may fail.

To enable this setting, reboot is necessary after saving the setting.

| Item                              | Command |    |    | Command description                               | Default (Effective range) |
|-----------------------------------|---------|----|----|---------------------------------------------------|---------------------------|
| USB-HID<br>Data transfer interval | [E9M    | Qa | Qb | Set transfer interval Interval: (10a+b) ms 「Unit」 | 4 ms<br>1-16 ms           |

Setting example)

Set the transmit interval to 1 ms (fastest).

Command: [E9MQ1

Set the transmit interval to 10 ms.

Command: [E9MQ1Q0

### 5.2.5 Inter Character Delay (USB-HID)

The inter character delay introduces a configurable delay after each transmitted character.

This may be used if the host does not support flow control and is not capable of handling the received data at full speed.

| Item                  | Command | Description | Default |
|-----------------------|---------|-------------|---------|
|                       | LA      | No delay    | ✓       |
|                       | LB      | Delay = 1   |         |
|                       | LC      | Delay = 2   |         |
|                       | LD      | Delay = 3   |         |
|                       | LE      | Delay = 4   |         |
| Inter character delay | LF      | Delay = 5   |         |
|                       | LG      | Delay = 6   |         |
|                       | LH      | Delay = 7   |         |
|                       | LI      | Delay = 8   |         |
|                       | LJ      | Delay = 9   |         |
|                       | LK      | Delay = 10  |         |

### 5.2.6 **Keyboard Language**

Set the keyboard language used on the host PC which the scanner to be connect. Keyboard arrangement differs depend on the country or language. If setting is incorrect, output result will be output incorrect.

| Item              | Command | Description      | Code page    | Default |
|-------------------|---------|------------------|--------------|---------|
|                   | KE      | USA              | Windows 1252 | ✓       |
|                   | KV      | UK               | Windows 1252 |         |
|                   | KG      | German           | Windows 1252 |         |
|                   | KI      | French           | Windows 1252 |         |
|                   | OW      | Italian          | Windows 1252 |         |
|                   | KJ      | Spanish          | Windows 1252 |         |
|                   | PH      | Portuguese       | Windows 1252 |         |
|                   | PL      | Swiss French     | Windows 1252 |         |
|                   | PK      | Swiss German     | Windows 1252 |         |
|                   | PI      | Dutch            | Windows 1252 |         |
| Keyboard Language | PJ      | Belgian          | Windows 1252 |         |
|                   | PD      | Swedish          | Windows 1252 |         |
|                   | PG      | Finnish          | Windows 1252 |         |
|                   | KK      | Danish           | Windows 1252 |         |
|                   | PE      | Norwegian        | Windows 1252 |         |
|                   | WF      | Czech            | Windows 1250 |         |
|                   | [BAY    | Hungarian        | Windows 1250 |         |
|                   | [BPJ    | Turkish          | Windows 1254 |         |
|                   | [EF4    | Russian English  | Windows 1251 |         |
|                   | [EF5    | Russian Cyrillic | Windows 1251 |         |
|                   | [BAZ    | Brazilian        | Windows 1252 |         |
|                   | [E76    | Chinese          | Windows 1252 |         |
|                   | [E77    | Korean           | Windows 1252 |         |
|                   | [E78    | Taiwanese        | Windows 1252 |         |
|                   | PM      | Japanese         | Shift-JIS    |         |
|                   |         |                  |              | 1       |

### 5.2.7 Trouble Shooting (USB-HID)

Following are the countermeasures for the troubles caused at USB-HID.

| Behavior                                              | Check points / Countermeasures                                                                                                                                 |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                       | Set the keyboard language and output destination application setting correctly.                                                                                |  |  |
| Output is not correct  Garbled characters             | In case the host side's processing speed is not sufficient, insert inter character delay.                                                                      |  |  |
| Garbied Characters                                    | If control string is included, confirm that Ctrl +"any alphabet key" do not overlap with the shortcut key on the host side.                                    |  |  |
| Multi byte character is not outputted                 | Please consider Windows application WIME with USB-COM.     Refer to 5.3.6     WME                                                                              |  |  |
| Line-break is doubled                                 | Set the suffix additional setting according to the host side application's line-break.                                                                         |  |  |
| Cannot output images                                  | Cannot transfer images.                                                                                                                                        |  |  |
| The scanner does not appear in Device Manager.        | <ul> <li>Check that USB cable is properly connected.</li> <li>Ensure that connected USB port is operating properly.</li> </ul>                                 |  |  |
| Restart unexpectedly.                                 | Confirm USB port power supply capability. If using laptop or hub, supply capacity might insufficient.                                                          |  |  |
| Error beep sounds and                                 | Remove from USB port at once, and after a while, insert again.                                                                                                 |  |  |
| does not output by reading                            | Insert to different port.                                                                                                                                      |  |  |
| Does not start reading even trigger key is turned on. | The trigger cannot be turned on until the connection between PC and USB is established. Please refer to above "The scanner does not appear in Device Manager". |  |  |

## 5.3 **USB-COM**

This chapter explains USB-COM interface settings.

| 5.3.1 | USB-COM Basic Information         |
|-------|-----------------------------------|
| 5.3.2 | Integration (USB driver)          |
| 5.3.3 | Connection Confirmation (USB-COM) |
| 5.3.4 | Fixed UBS-COM Port                |
| 5.3.5 | Connection Method                 |
| 5.3.6 | COM to HID Output                 |
| 5.3.7 | Trouble Shooting (USB-COM)        |

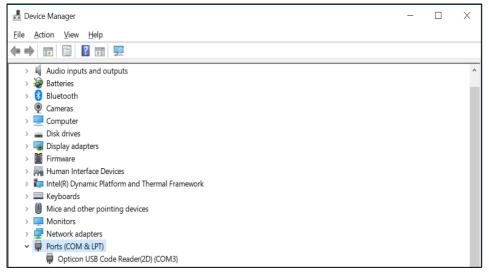
### 5.3.1 **USB-COM Basic Information**

| Item                             | Description                    | Note                               |
|----------------------------------|--------------------------------|------------------------------------|
| Transfer Speed                   | Full Speed USB 2.0 (FS mode)   |                                    |
| Required power supply capability | 500 mA                         | Actual current value is different. |
| Vendor ID                        | 065A                           |                                    |
| Product ID                       | A002                           |                                    |
| Other                            | CDC-ACM compliance             |                                    |
| Fixed COM number                 | Fixing COM number is possible. | Default: not fix                   |

### 5.3.2 Integration (USB driver)

USB driver is required to connect to the PC via USB-COM interface.

Please download the USB driver from our website, and install appropriately according to the attached documents.


#### 5.3.3 Connection Confirm

USB-COM interface, confirm the connection by following procedure.

For Windows 10

Install Opticon USB driver.

- 1. Connect the scanner to the PC.
- 2. Right-click "Windows icon" and select "Device Manager".
- 3. Open "Ports (COM & LPT)".



#### 5.3.4 Fixed USB-COM Port

This option enables fixed USB-COM Port number. The COM port number to which the USB connected Windows PC is assigned will always be the same port number.

| Item                                           | Command |    | Description                         | Default  |
|------------------------------------------------|---------|----|-------------------------------------|----------|
| Fixed USB-COM Port number and driver selection | 1500    | Q0 | Not to fix assigned COM port number | <b>✓</b> |
|                                                | [EGC    | Q1 | Fix assigned COM port number        |          |

<sup>\*</sup> Fixed USB-COM Port settings will become active after a reboot and initialization of the scanner.

#### 5.3.5 Connection Method

Connect to the host PC by following procedure.

- 1. Start the tool to serial communicates (emulator or UniversalConfig).
- 2. Connect to the COM port confirmed at 5.3.3 Connection.



3. For Command packet, refer to 3.1.1.

#### 5.3.6 **COM to HID Output**

WIME (Windows .NET Application) allows to convert data received by the scanner via virtual COM port (USB-COM) to HID-like and transfer to the application which has focus.

In case multi byte character is not output correctly with USB-HID, this can be solved by using WIME.



# 5.3.7 Trouble Shooting (USB-COM)

Following are the several countermeasures for the trouble caused by USB-COM.

| Behavior                                          | Check points / Countermeasures                                                                                                    |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                   | Check that USB cable is properly connected.                                                                                       |  |  |  |  |  |
|                                                   | Ensure that connected USB port is operating properly.                                                                             |  |  |  |  |  |
| Not recognized by the PC (Scanner does not appear | In case of connecting to wireless devices like Bluetooth, disconnect once.                                                        |  |  |  |  |  |
| in the device manager)                            | Confirm the USB port power supply capability. When using laptop or hub, supply capacity may insufficient.                         |  |  |  |  |  |
|                                                   | Remove from the USB port at once, and after a while, insert again.                                                                |  |  |  |  |  |
|                                                   | Insert to different port.                                                                                                         |  |  |  |  |  |
| Error beep sounds and                             | In addition to above;                                                                                                             |  |  |  |  |  |
| does not output by reading                        | Open the COM port with the communication tool.                                                                                    |  |  |  |  |  |
|                                                   | Confirm the COM port number by device manager. Refer to <u>5.3.3</u> for how to check.                                            |  |  |  |  |  |
| Cannot connect<br>(Cannot open COM port)          | Close the tool and re-open it. Operation and countermeasures vary depending on the tool. Please refer to the tool help or manual. |  |  |  |  |  |
|                                                   | Reboot the PC.                                                                                                                    |  |  |  |  |  |
| Garbled characters                                | Confirm that code to be read matches to the character code of the communication tool.                                             |  |  |  |  |  |
| Line-break is doubled                             | Check the line-break setting of the communication tool.                                                                           |  |  |  |  |  |

# 5.4 Common Settings

This section describes the settings common to all interfaces.

#### 5.4.1 Data Buffer Mode

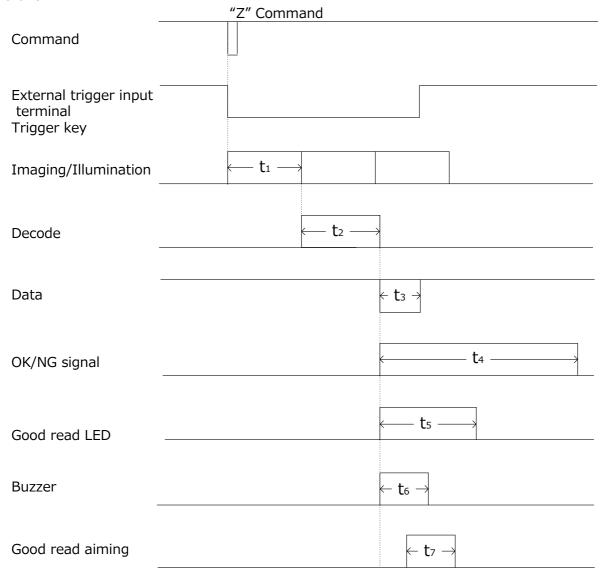
This option allows you to specify whether to read an object during data output. When buffer mode is enabled, the scanner can perform other operations such as barcode scanning while outputting decoded data. However, the reading performance may degrade during the data output. When buffer mode is disabled, the scanner stops other operations until the completion of decoded data output.

The following menu codes / commands are provided for the data buffer mode setting.

| Item             | Command | Description          | Default |
|------------------|---------|----------------------|---------|
| Data buffer mode | [D80    | Data buffer disable  |         |
|                  | [D81    | Data buffer enable * | ✓       |

<sup>\*</sup> When handshaking is configured (refer to 5.1.4), this setting is ignored and Data Buffer Mode is disabled.

# **6 Reading and Timing**


This chapter describes the read timing and various timings of the scanner.

- **6.1** Reading and Trigger Control
- 6.2 OK/NG Signal

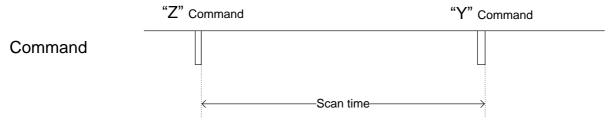
# 6.1 Reading and Trigger Control

# 6.1.1 Code Read Timing

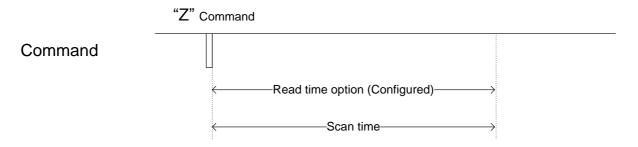
The scanner acquire image by the trigger and decode the code. The read timing of the scanner is as follows.



| Symbol         | Description                                                             | Notes                     |
|----------------|-------------------------------------------------------------------------|---------------------------|
| t <sub>1</sub> | Continuously acquire images with CMOS sensor.                           | -                         |
| t <sub>2</sub> | If there is a code in the image, processes decoding.                    | Refer to Decode Timeout   |
| t <sub>3</sub> | When decoding successes, transfer the data.                             | Refer to Baud Rate        |
| t <sub>4</sub> | OK signal when decoding success.  NG signal when reading time out.      | Refer to OK/NG Signal     |
| t <sub>5</sub> | When decoding successes, green LED on the side panel of housing lights. | Refer to Status LED       |
| t <sub>6</sub> | When decoding success, the buzzer sounds.                               | Refer to Buzzer           |
| t <sub>7</sub> | When decoding success, aiming can be turned on.                         | Refer to Good Read Aiming |


# 6.1.2 **Command Trigger Control**

The reading operation can be started / terminated by sending commands.


| Item             | Command | Description   | Remark       |
|------------------|---------|---------------|--------------|
| External trigger | Z       | Start reading | Command only |
|                  | Y       | Stop reading  | Command only |

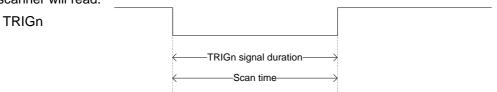
<sup>\*</sup> When the default read time (refer to <u>Read Time</u>) is invalid, the read time with the Z command will be 'Indefinitely' and reading will stop by Y command.

When reading with a command, start reading by trigger "Z" command, and stop reading by sending "Y" command etc.



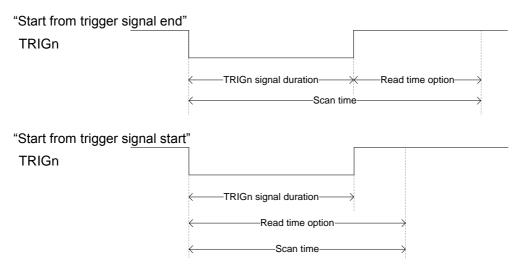
When effective read time is set, it stops reading when the set time elapses. Also, it stops when sending "Y" commands etc.




## 6.1.3 External Trigger Signal Control

High/Low active of the external trigger signal can be selected.

| Item            | Command | Description                         | Default |
|-----------------|---------|-------------------------------------|---------|
| Command trigger | YA      | External trigger signal High active |         |
|                 | YB      | External trigger signal Low active  | ✓       |


<sup>\*</sup> For external trigger signal circuit, refer to Connect to the Host and loose end spec RS-232C.

By default, trigger signal and read time are synchronized. As long as TRIGn signal is active, the scanner will read.



The start timing when effective read time (refer to 6.1.4) is set can be set as follows.

| Item                | Command | Command Description           |   |
|---------------------|---------|-------------------------------|---|
| Effective read time | +O      | Start from TRIGn signal end   | ✓ |
| start timing        | +P      | Start from TRIGn signal start |   |



When external trigger signal is not used and if there is a possibility of noise generation, disable the signal.

| Item                                           | Comm | nand | Description                               | Default |
|------------------------------------------------|------|------|-------------------------------------------|---------|
| External trigger reception<br>Enable / Disable | IEGO | Q0   | Disable external trigger signal reception |         |
|                                                | [EGO | Q1   | Enable external trigger signal reception  | ✓       |

## 6.1.4 Read Time Setting

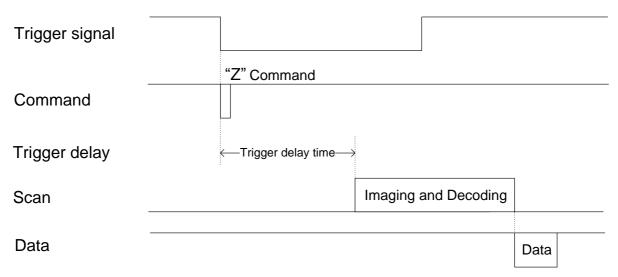
Read time setting sets the reading time of 1 reading operation. After trigger signal is on, or when the readout command "Z" is sent, readout operation starts. If no data outputted within the specified time, the readout operation stops.

| Item                   | Command | Description                                               | Default |
|------------------------|---------|-----------------------------------------------------------|---------|
|                        | Y0      | Trigger signal synchronization or "Z" "Y" command control | ✓       |
|                        | Y1      | 1 second                                                  |         |
|                        | Y2      | 2 seconds                                                 |         |
|                        | Y3      | 3 seconds                                                 |         |
|                        | Y4      | 4 seconds                                                 |         |
| Read time setting      | Y5      | 5 seconds                                                 |         |
| rtodd tiirio dattiilig | Y6      | 6 seconds                                                 |         |
|                        | Y7      | 7 seconds                                                 |         |
|                        | Y8      | 8 seconds                                                 |         |
|                        | Y9      | 9 seconds                                                 |         |
|                        | YL      | Read time infinite                                        |         |
|                        | YM      | Read time 10 times                                        |         |

<sup>\*</sup> When auto trigger with "Y0", read time is automatically set by the image processing.

The extended read time can be set with numerical parameters by inputting the command followed by a 4-digit numerical command in unit of 10 ms.

| Item                                 |      | Co | mman | d  |    | Description                                              | Default<br>(effective<br>range) |
|--------------------------------------|------|----|------|----|----|----------------------------------------------------------|---------------------------------|
| Extended read time numerical setting | [DF7 | Qa | Qb   | Qc | Qd | Setting of extended read time (1000a+100b+10c+d) [x10ms] | Synchronize with trigger        |


Example when read time 500ms) <Esc>[DF7Q0Q0Q5Q0<CR> 0050 x 10 = 500 ms \*Setting is in unit of 10 ms.

# 6.1.5 Trigger Delay

Trigger delay can start reading from after the trigger delay set time to trigger.

| Item          |      | Co | mman | d  |    | Description                                   | Default |
|---------------|------|----|------|----|----|-----------------------------------------------|---------|
| Trigger delay | [DEC | Qa | Qb   | Qc | Qd | Trigger delay time (1000a+100b+10c+1d)x[10ms] | 0 ms    |

The timing diagram of the trigger delay is as below.



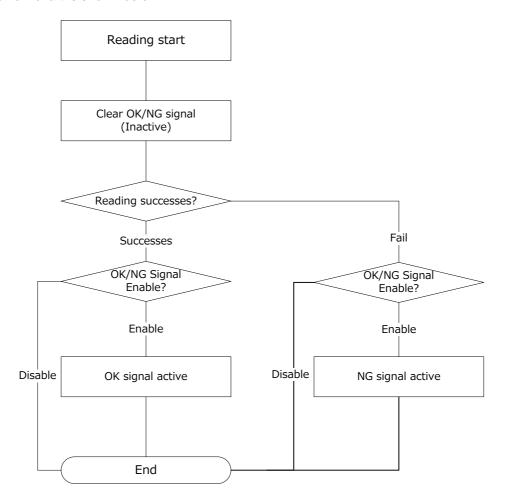
# 6.1.6 **Decode Timeout**

Decode timeout can limit decode processing time for 1 image.

| Item           |      |    | Coi | mmar | nd |    |    | Description                                   | Default |
|----------------|------|----|-----|------|----|----|----|-----------------------------------------------|---------|
| Decode timeout | [EAV | Q7 | Q4  | Qa   | Qb | Qc | Qc | Trigger delay time (1000a+100b+10c+1d)x[10ms] | 0 ms*   |

<sup>\*</sup> Decode timeout = 0 means function is disabled. Process decoding for 1 image until the end. Processing time depend on the image.

# 6.2 **OK/NG Signal**

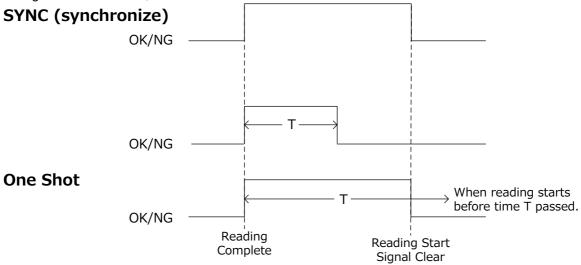

Loose end spec contains the output wires to signal the reading success. OK = a good read occurred. NG = a no good read occurred.

## 6.2.1 Enable/Disable OK/NG signal

To enable/disable, use the settings below.

| Item           | Command | Description          | Default |
|----------------|---------|----------------------|---------|
| Enable/Disable | [X*Q    | Enable OK/NG signal  |         |
| OK/NG signal   | [X*R    | Disable OK/NG signal | ✓       |

The basic flow chart is shown below.




## 6.2.2 **OK/NG Signal Behavior Settings**

To set OK/NG signal behavior, use the settings below.

| Item             | Command      | Description                                                     | Default  |
|------------------|--------------|-----------------------------------------------------------------|----------|
|                  | [X*C         | HIGH active SYNC (synchronize): Signal is active until cleared. | <b>✓</b> |
| OK/NG signal     | [X*D         | LOW active SYNC (synchronize): Signal is active until cleared.  |          |
| behavior setting | setting [X*E | HIGH active One Shot: Signal is active for a certain time.      |          |
|                  | [X*F         | LOW active One Shot: Signal is active for a certain time.       |          |

SYNC (synchronize) and One Shot signal output image are shown below. The signal is HIGH active, the time to hold active state with One Shot is T.



For SYNC (synchronize), OK or NG signal becomes active after reading is completed, and the active state is hold until next reading starts. For One Shot, becomes active when reading is complete, and becomes inactive after time T. When the next reading starts before time T passes, becomes inactive in between.

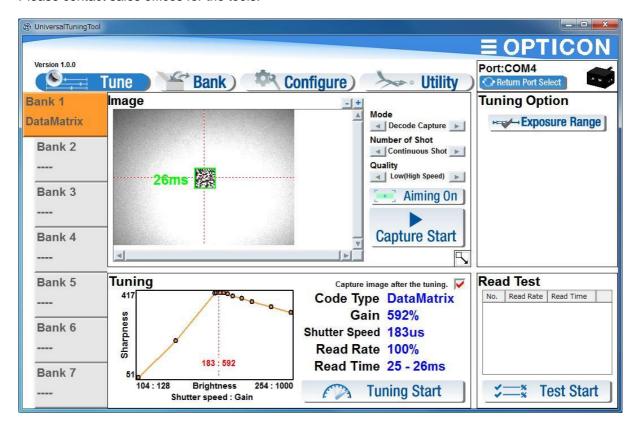
To set time T to hold One Shot active state, use the settings below.

| Item                     | Command | Description | Default |
|--------------------------|---------|-------------|---------|
|                          | [X*G    | 10 ms       | ✓       |
|                          | [X*H    | 20 ms       |         |
|                          | [X*I    | 30 ms       |         |
|                          | [X*J    | 40 ms       |         |
| OK/NG signal<br>One Shot | [X*K    | 50 ms       |         |
| Active time              | [X*L    | 60 ms       |         |
|                          | [X*M    | 70 ms       |         |
|                          | [X*N    | 80 ms       |         |
|                          | [X*O    | 90 ms       |         |
|                          | [X*P    | 100 ms      |         |

# 7 Tuning and Bank Function

This chapter describes the tuning and bank function of the scanner.

- **7.1** Tuning Overview
- **7.2** <u>Tuning</u>
- 7.3 Reading Test
- 7.4 Bank Function


# 7.1 Tuning Overview

#### 7.1.1 Tuning Function

Tuning function adjusts the optimum exposure for the code to be read and limits the effective read code. Also, you can find the optimum installation condition by using UniversalTuningTool. By using the tuning function and adjusting the exposure range, the user can improve performance of the scanner for scan-in-motion applications.



Please contact sales offices for the tools.



# 7.1.2 Tuning Setting Flow

The general flow of "Examine" and "Integrate" when using tuning are as follows.

| Examination                                                                              |                                      |  |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Examine installation requirements etc., and confirm operable condition.                  |                                      |  |  |  |  |  |
| Decide the scanner focus model by code resolution and installation distance.             | : Depth of Field and Focus Type      |  |  |  |  |  |
| Examine optimum installation condition without reflection etc. using UniversalTunigTool. | : <u>Scanned Media and Placement</u> |  |  |  |  |  |
| Perform tuning.                                                                          | : <u>Tuning</u>                      |  |  |  |  |  |
| Perform a test and confirm whether it is a stable reading.                               | : Reading Test                       |  |  |  |  |  |
| Examine "require setting for operation".                                                 | : Refer to each section              |  |  |  |  |  |

| Integration                                                                 |                             |
|-----------------------------------------------------------------------------|-----------------------------|
| Set the scanner in the following or                                         | der.                        |
| Configure settings that are required in advance like interface setting etc. | : Interface                 |
| Configure "require setting for operation".                                  | : Refer to each section     |
| • Perform tuning. <b>(Caution)</b>                                          | : Execute Tuning            |
| Set additional codes if necessary.*                                         | : Setting of Readable Codes |

**(Caution)** Since tuning adjustment value differs for each scanner, tuning needs to be performed for each scanner.

<sup>\*</sup> The additional code needs to be same distance and reflectance.

# 7.2 **Tuning**

Tuning can be excluded by command. The setting and output during tuning are as follows.

## 7.2.1 Execute Tuning

To start and stop tuning, use the settings below.

| Item                       | Command | Description               | Remark |
|----------------------------|---------|---------------------------|--------|
| Execute [DT1 Start tuning. |         | Start tuning.             | *1     |
| Tuning                     | [DT2    | Stop in middle of tuning. | *2     |

\*1. "Tuning complete" will be output when tuning successes, and after line brake, separate each output items with ":" at tuning.

|                                         | 3                                                                                                   |                  |                |                          |                                   |              |               |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|----------------|--------------------------|-----------------------------------|--------------|---------------|--|
| Tuning c                                | Tuning complete <cr></cr>                                                                           |                  |                |                          |                                   |              |               |  |
| Indicate tuning success and line brake. |                                                                                                     |                  |                |                          |                                   |              |               |  |
| BANK 1:                                 | BANK 1:CODETYPE QRCode:SHUTTER 177[us]:GAIN 648[%]:RATE 100[%]:TIME 25 - 26[ms]:123456789 <cr></cr> |                  |                |                          |                                   |              |               |  |
| Bank<br>No.                             | Code<br>Type                                                                                        | Shutter<br>Speed | Sensor<br>Gain | Read rate in<br>10 times | Min/Max of read times in 10 times | Read<br>Data | Line<br>Break |  |

\*2. The output when tuning failed or stopped in middle.

Tuning failed<CR>
Indicate tuning failed or stopped and line break.

#### 7.2.2 Setting the Exposure Adjustment Range of Tuning

Tuning adjusts "Shutter time" and "Sensor Gain". The range can be set in advance when adjusting. By adjusting the range, following effects can be obtained.

- ☐ Support tuning of motion tolerance by shortening the adjustment upper limit time of the shutter time.
- ☐ Reducing the adjustment upper limit value of the sensor gain may reduce noise and make it easier to read.

Exposure adjustment range setting command of tuning is as follows.

| Item                                       | Command |    |    |    |    |    |    | Description                                                                      | Remark |
|--------------------------------------------|---------|----|----|----|----|----|----|----------------------------------------------------------------------------------|--------|
| Exposure<br>adjustment<br>range<br>setting | [DT3    | Qa | Qb | Qc | Qd | Qe | Qf | Set lower/upper limit value of<br>"Shutter time" and<br>"Sensor gain" at tuning. | *1     |

\*1 For "a / b / c / d / e / f", set by the following parameter.

| Setting Item                                     | а | b | c def                              | Adjustment range |
|--------------------------------------------------|---|---|------------------------------------|------------------|
| Shutter time Adjustment lower limit value [us]   | 0 | 0 | Set to d.ef x 10 <sup>c</sup> [us] | From 30µs        |
| Shutter time Adjustment upper limit value [us]   | 0 | 1 | Set to d.er x 10 [us]              | To 9000µs        |
| Sensor gain Adjustment lower limit value [times] | 1 | 0 | Set to cd.ef [times]               | From 1 time      |
| Sensor gain Adjustment upper limit value [times] | 1 | 1 | Set to ca.er [times]               | To 10 times      |

Setting example) Set adjustment upper limit value of shutter time to 400 µs.

■ To output current exposure adjustment range, use the following command.

| Item                             | Command | Description                                                                    | Remark |
|----------------------------------|---------|--------------------------------------------------------------------------------|--------|
| Output exposure adjustment range | [DT4    | Outputs lower/upper limit value of "Shutter time" and "Sensor gain" at tuning. | *2     |

\*2 The output of exposure adjustment range are as follows.

Shutter speed 100 - 400[us] <CR>

Indicate adjustment of shutter time and line break.

Gain 100 - 1000[%]<CR>

Indicate adjustment of sensor gain and line break.

■ To reset exposure adjustment range, send the following command.

| = 101000t oxpoodio a            | ajaotimont range | , cond the remetting community                                              |        |
|---------------------------------|------------------|-----------------------------------------------------------------------------|--------|
| Item                            | Command          | Description                                                                 | Remark |
| Reset exposure adjustment range | [DT5             | Reset the exposure adjustment range of the current bank to initial setting. |        |

<sup>&</sup>lt;Esc>[DT3Q0Q1Q2Q4Q0Q0<CR>

# 7.3 Reading Test

After tuning, use the test command to confirm whether installation condition and tuning work properly.

# 7.3.1 Reading Test Command

Reading test outputs 1 result after 10 times of imaging and reading each. And output this continuously. To start / end reading test, use the following command.

| Item         | Command | Description         | Remark |
|--------------|---------|---------------------|--------|
| Reading test | .V      | Start reading test. |        |
| Start/End    | .W      | End reading test.   |        |

The reading test outputs following data continuously.

| Bank<br>No. | Read rate in 10 times | Max/Min read time in 10 times | Read<br>data | Line<br>break |
|-------------|-----------------------|-------------------------------|--------------|---------------|
| 1           |                       | TIME 24 - 26[ms]:1            |              |               |
|             |                       |                               |              |               |
| BANK 1      | :RATE 100[%]:         | :TIME 24 - 27[ms]:1           | 23456789     | 9 <cr></cr>   |
|             |                       | :TIME 24 - 28[ms]:1           |              |               |
| BANK 1      | :RATE 100[%]:         | :TIME 25 - 26[ms]:1           | 23456789     | 9 <cr></cr>   |
|             | · ·                   | Tonoming data com             |              |               |

## 7.4 Bank Function

Various setting parameters can be registered to bank No.1-7 in bank function. Registering bank according to operation is possible.

- Parameters that can be registered to bank: Tuning value, Read code setting, String option etc.
- Parameters that cannot be registered to bank: Interface setting, Read operation setting etc.

#### 7.4.1 Bank Selection

Initial value of the bank operates at No.1. To select bank, use the following setting.

| Item              | Co         | Command |    | Description                                   | Default  |
|-------------------|------------|---------|----|-----------------------------------------------|----------|
| Bank<br>selection | [BRA Qa Qb |         | Qb | Select bank ab<br>Effective value: a=0, b=1-7 | a=0, b=1 |

### 7.4.2 Bank Specify Trigger

The bank specify trigger operate as a combine of bank selection and trigger "Z" command. This allows executing with 1 command.

| Item              | Co         | Command |    | Description                                       | Default  |
|-------------------|------------|---------|----|---------------------------------------------------|----------|
| Bank<br>selection | [TRG Qa Qb |         | Qb | Bank specify trigger* Effective value: a=0, b=1-7 | a=0, b=1 |

<sup>\*</sup> To end reading, use "Y" command just like "Z" command.

#### 7.4.3 Confirm Current Bank

To confirm current bank number, use the following setting.

| Item                 | Command | Description                                     | Remark |
|----------------------|---------|-------------------------------------------------|--------|
| Confirm current bank | [DGQ    | Display the current bank with 2 digits (00-07). | *      |

<sup>\*</sup> When in default and bank initialized, "00" as bank default will be displayed.

#### 7.4.4 Initialize Bank

| Item       | Command |    | ıd | Description                                                         | Remark |
|------------|---------|----|----|---------------------------------------------------------------------|--------|
| Initialize | [BRB    | Qa | Qb | Qb Initialize bank ab setting parameter Effective value: a=0, b=1-7 |        |
| Bank       | [BRC    | •  |    | Initialize all banks setting parameter.                             | *      |

<sup>\*</sup> Settings that are not included in the bank parameters will not be initialized.

<sup>\*</sup> When bank is initialized, the scanner operates with the default bank as long as bank with effective parameter is not selected.

# 8 Read Options

This chapter describes the read options for the scanner.

- 8.1 Read Modes Overview
- 8.2 Auto Trigger
- 8.3 Illumination and Aiming

# 8.1 Read Modes Overview

# 8.1.1 Read Operation Flow

Following are the reading operation of the scanner.

| Reading Start           |                                                                                            |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                         | Select Trigger Method                                                                      |  |  |  |  |  |  |
| Command trigger         | Trigger by serial communication command.                                                   |  |  |  |  |  |  |
| External trigger signal | Trigger by RS-232C loose end external trigger input terminal.                              |  |  |  |  |  |  |
| Auto trigger            | Automatically trigger by judging that the target came by the image.                        |  |  |  |  |  |  |
| Trigger Key             | Press down the trigger key on the side of scanner to operate when testing and maintenance. |  |  |  |  |  |  |

|               | Trigger Delay Time                                             |
|---------------|----------------------------------------------------------------|
| Trigger delay | Delay read operation until specified time. (Default: no delay) |

| Read Mode                                                                                                 |                                                                                     |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Single read                                                                                               | End after reading 1 code. (Default)                                                 |  |  |  |  |  |  |
| Multiple read 1     Stores read code data to memory and continue operation with not reading to same data. |                                                                                     |  |  |  |  |  |  |
| Multiple read 2                                                                                           | Permit same data reading of read code data with time limit and continues operation. |  |  |  |  |  |  |
| Continues read     Limit to the testing, continuously read the same data.                                 |                                                                                     |  |  |  |  |  |  |
|                                                                                                           |                                                                                     |  |  |  |  |  |  |
| Batch reading                                                                                             | Batch reading with a specified rule is possible by using data edit function.        |  |  |  |  |  |  |

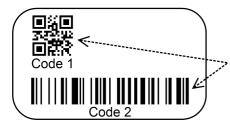
| Reading Complete                                          |
|-----------------------------------------------------------|
| Reading success, Reading complete operation, Read timeout |

#### 8.1.2 Read Modes

Read modes includes "single read", "multiple read 1", "multiple read 2" and "continues read" modes.

| Item            | Command | Description                                                                                             | Default |
|-----------------|---------|---------------------------------------------------------------------------------------------------------|---------|
| Single Read     | S0      | Single read in a single trigger                                                                         | ✓       |
| Multiple Read 1 | [D3P    | Multiple read in a single trigger, the scanner saves the read data in memory to not read the same data. |         |
| Multiple Read 2 | S1      | Multiple read in a single trigger, the scanner read the same data.                                      |         |
| Continues Read  | S2      | Reads continuously even with the same code. Limit to testing etc. to operate.                           |         |

#### Single Read


The scanner starts reading after a trigger until a barcode is successfully decoded or until the read time expires. (See <u>6.1.4</u>)

#### • Multiple Read 1 (Do not read the same data)

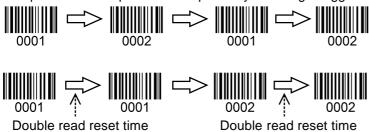
The scanner starts reading after a trigger and stays reading even after a barcode is successfully decoded, until the read time expires. To prevent that a barcode is read twice, the scanner saves the read barcodes in memory and checks if it has been read before. The list in memory is 20 barcodes long so after 20 different barcodes, the same barcode can be read again.

If there is more than one code within the read area, as in the following figure, this read mode is helpful to prevent reading the same code twice.

Example: Read multiple codes continuously with a single trigger.



To prevent that a barcode is read twice, the scanner saves the read barcodes in memory and checks if it has been read before.


To set the number of codes to be saved in the memory to prevent that a barcode is read twice, use the following command.

| are remembered earning                                          |      |      |      |    |                                                                                                                                        |                                             |
|-----------------------------------------------------------------|------|------|------|----|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Item                                                            |      | Comm | nand |    | Description                                                                                                                            | Default<br>Effective Range                  |
| Multiple Read 1<br>Number of codes<br>not read the same<br>data | [D3P | Qa   | Qb   | Qc | Set the number of codes to be saved in the memory to prevent that a barcode is read twice. Set; a:100 digits / b:10 digits / c:1 digit | Default: 20<br>Effective range:<br>1 to 200 |

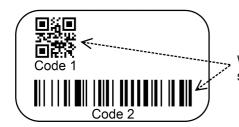
#### • Multiple Read 2 (Permit same data reading)

The scanner starts reading after a trigger and stays reading even after a barcode is successfully decoded until the read time expires. The same barcode cannot be read twice unless another barcode is read in between or when at least "Double read reset time" (refer to 8.2.3) has past. If the same code continues to be at the same position in the image, it will not be read even if the double read reset time has canceled.

Example: Read multiple codes sequentially with single trigger.

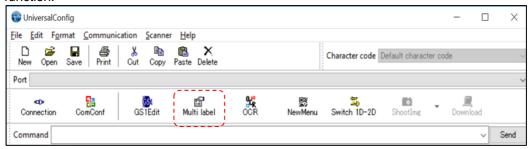


#### • Continues Read

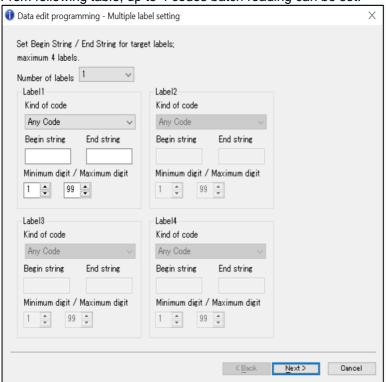

To confirm the reading performance in test etc., read continuously even with the same code.

Example: Reads continuously even with the same code.




# 8.1.3 Batch Reading

When there are specific rule to multiple codes, batch read setting by data edit programing function can be set. Has an advantage that code outside of specific rule can be read as it is. Example of code specific rule: "Code type", "number of digits" and "first and last string" etc.




When there are specific rule to multiple codes, batch read setting by data edit programing function can be set.

When reading fixed format code in a batch, setting is available from the UniversalConfig batch reading function.



From following table, up to 4 codes batch reading can be set.



<sup>\*</sup>Please contact to sales offices if there are items cannot be set with above.

#### 8.1.4 Data Edit Function

Data edit script programming is a form of data output formatting so the user may change the scanned data to a format that is more desirable to be output. This data edit script programming is integrated into the software of the scanner. The Universal Config utility has some support for Data Editing, but it is an advance language and may need extra support. Please contact technical support or your sales office for more information on this.

# 8.2 Auto Trigger

When auto trigger is enabled, the scanner automatically detects an object in front and starts reading it.

## 8.2.1 Normal Auto Trigger (Without Stand)

Auto trigger operates by following command.

| . tate ingger eperated by i |         |                                   | 5 ( )   |
|-----------------------------|---------|-----------------------------------|---------|
| Item                        | Command | Description                       | Default |
| Auto triggor                | +F      | Disable presentation auto trigger | ✓       |
| Auto trigger                | +1      | Enable presentation auto trigger  |         |

## 8.2.2 Auto Trigger Sensitivity

The detection sensitivity can be adjusted. The sensitivity varies with the ambient environment and

adjustment may be necessary.

| Item                     | Command | Description | Default |
|--------------------------|---------|-------------|---------|
|                          | [XMF    | Sensitive   |         |
| Auto trigger sensitivity | [XMH    | Normal      | ✓       |
|                          | [XMJ    | Insensitive |         |

#### 8.2.3 Double Read Reset Time

This allows setting of time interval before the same code can be decoded again in auto trigger mode. When a code with different data is read, this will be reset.

| Item                   | Command |    |    | d  |    | Description                                    | Default<br>(valid range) |
|------------------------|---------|----|----|----|----|------------------------------------------------|--------------------------|
| Double read reset time | [D3R    | Qa | Qb | Qc | Qd | Double read reset time (1000a+100b+10c+d) [ms] | 700 ms<br>(0-9999)       |

<sup>\*</sup>When 0 second is set, the same code will not be decoded.

# 8.2.4 Read Time Adjustment

The time to end the auto trigger scanning can be adjusted.

| Item                              | Command | Description | Default |
|-----------------------------------|---------|-------------|---------|
|                                   | [EFH    | Long time   |         |
| Auto trigger read time adjustment | [EFI    | Normal      | ✓       |
| 33,33                             | [EFJ    | Short time  |         |

<sup>\*</sup>When the read time is fixed, please see: "Read Time"

# 8.2.5 Auto Trigger Sleep Mode

When nothing is detected after a specific configurable period while in auto trigger mode, the scanner goes into sleep mode. The scanner performs presence detection at specified time intervals in sleep mode and when a target is detected or any event such as trigger occurs, the unit exits from sleep

mode. Setting a time of 0 seconds means that sleep mode is disabled.

| Item                    |      | Command |    |    | ·  | Description                                          | Default<br>(valid range) |
|-------------------------|------|---------|----|----|----|------------------------------------------------------|--------------------------|
| Auto trigger sleep mode | [EBW | Qa      | Qb | Qc | Qd | Transition time to sleep mode (1000a+100b+10c+d) [s] | 60 s<br>(0-9999)         |

# 8.3 Illumination and Aiming

Warm white illumination for reading and Green LED aiming can be enabled or disabled.

#### 8.3.1 Reading LED Illumination

Red LED illuminations enable / disable, illuminance method and brightness that are used for reading can be set.

Following method is available for reading target that specular reflection is likely to occur.

- LED Illumination → Enable / Disable
   When the illumination is disabled, the reading performance may be degraded.
   However, when reading only the code displayed on the LCD screen, the reading performance may improve.
- LED Illumination → Automatic switching
   Floodlight ON and OFF are alternated. The illumination in which a code was read is memorized and
   will be prioritized for subsequent reading.
   This function is recommended when reading the target that specular reflection easily occurs.
- LED Illumination → Prevent specular reflection
   Disable illumination only when specular reflection by LED illumination occur and reads.

| Item             | Command | Description                                    | Default |
|------------------|---------|------------------------------------------------|---------|
|                  | [D39    | LED illumination → Enable                      | ✓       |
| LED illumination | [D3A    | LED illumination → Disable                     |         |
| mode             | [D3B    | LED illumination → Automatic switching         |         |
|                  | [D3Q    | LED illumination → Prevent specular reflection |         |
| LED illumination | [DDB    | LED brightness → Standard                      | ✓       |
| brightness       | [DDC    | LED brightness → Low                           |         |

#### 8.3.2 **LED Aiming**

Green LED floodlight used for aiming can be set to enable / disable. The brightness is also configurable.

| Item                  | Command | Description           | Default |
|-----------------------|---------|-----------------------|---------|
| LED aiming            | [D3D    | Enable LED aiming     | ✓       |
| ON/OFF                | [D3E    | Disable LED aiming    |         |
|                       | [DDD    | Brightness "High"     | ✓       |
| LED aiming brightness | [DDE    | Brightness "Standard" |         |
| g                     | [DDF    | Brightness "Low"      |         |

# 9 Code Options

This chapter describes the code options for the scanner.

These options allow you to configure the enabled code types, code specific options, and number of characters to be read.

It is strongly recommended to enable only the required codes and options for best reading performance. These settings do not affect the reading of the 1D menu codes. \*Refer 11.3 Sample codes for the codes.

- 9.1 Setting of Readable Codes
- **9.2** Setting of Code Common Options
- 9.3 Setting of Code Specific Option
- 9.4 Setting of Number of Characters

# 9.1 Setting of Readable Codes

The following tables show the supported symbologies and their configuration commands.

### • Single

Only the specified symbology will be enabled and all other symbologies will be disabled.

#### Multiple

The specified symbology will be enabled in addition to the already enabled symbologies.

#### • Disable

The specified symbology will be disabled. All other enabled symbologies stay enabled.

#### 9.1.1 **1D Codes**

|                    | Enable | /Disable co | command Default |          | Default        |                               |                           |             |                    |
|--------------------|--------|-------------|-----------------|----------|----------------|-------------------------------|---------------------------|-------------|--------------------|
| Symbologies        | Single | Multiple    | Disable         | Enable   | Mini<br>length | Positive<br>Negative<br>Image | ST/SP<br>trans<br>mission | CD<br>check | Suffix             |
| UPC                | J1     | R1          | [X4B            | ✓        | -              |                               | -                         | ✓           |                    |
| UPC-A              | [J1A   | [R1A        | [V1A            | ✓        | -              |                               | -                         | ✓           |                    |
| UPC-E              | [J1B   | [R1B        | [V1B            | <b>✓</b> | -              |                               | -                         | <b>√</b>    |                    |
| EAN/JAN            | J4     | R4          | [X4E            | <b>✓</b> | -              |                               | -                         | <b>√</b>    |                    |
| EAN/JAN-13         | JG     | JU          | [DDM            | <b>✓</b> | -              |                               | -                         | ✓           |                    |
| EAN/JAN-8          | JA     | JO          | [DDN            | ✓        | -              |                               | -                         | ✓           |                    |
| Code 39            | A2     | B2          | VB              | ✓        | 1              |                               | ×                         | *           |                    |
| Tri-Optic          | JD     | JZ          | [DDJ            | ✓        | -              |                               |                           |             |                    |
| Codabar            | А3     | В3          | VC              | ✓        | 2              |                               | ×                         | *           | USB-HID            |
| Industrial 2 of 5  | J7     | R7          | [X4K            | ✓        | 5              | Positive                      | -                         | *           | "ENTER"            |
| Interleaved 2 of 5 | J8     | R8          | [X4L            | ✓        | 6              | Image<br>Only                 | -                         | *           | USB-COM<br>RS-232C |
| S-Code             | RA     | R9          | [DDK            |          | 5              |                               |                           |             | "CR"               |
| Code 128           | A6     | В6          | VE              | ✓        | 1              |                               | -                         | ✓           |                    |
| Code 93            | A5     | B5          | VD              | ✓        | 1              |                               | -                         | 1           |                    |
| IATA               | A4     | B4          | VH              | ✓        | 5              |                               | -                         | *           |                    |
| MSI/Plessey        | A7     | В7          | VF              |          | 3              |                               | -                         | ✓           |                    |
| UK/Plessey         | A1     | B1          | VA              |          | 2              |                               | -                         | ✓           |                    |
| Telepen            | A9     | В9          | VG              |          | 1              |                               | -                         | ✓           |                    |
| Code 11            | [BLB   | [BLC        | [BLA            |          | 1              |                               | -                         | ✓           |                    |
| Matrix 2 of 5      | AB     | ВВ          | [DDL            |          | 5              |                               | -                         | *           |                    |

<sup>\*</sup> Refer to 9.2.1 for convert and Code 128 to GS1 128 and read.

# 9.1.2 Postal Code

| Cumbalaniaa                | Enabl  | e/Disable com | De      | efault |                    |
|----------------------------|--------|---------------|---------|--------|--------------------|
| Symbologies                | Single | Multiple      | Disable | Enable | Suffix             |
| Chinese Post Matrix 2 of 5 | JE     | JS            | JT      |        |                    |
| Korean Postal Authority    | JL     | WH            | WI      |        |                    |
| Intelligent Mail Barcode   | [D5H   | [D5F          | [D5G    |        |                    |
| POSTNET                    | [D6C   | [D6A          | [D6B    |        | USB-HID<br>"ENTER" |
| PLANET                     | [DG2   | [DG3          | [DG4    |        | ENIER              |
| Japan Postal               | [D5R   | [D5P          | [D5Q    |        | USB-COM<br>RS-232C |
| Netherland KIX Code        | [D5M   | [D5K          | [D5L    |        | "CR"               |
| Australian Postal          | [D6O   | [D6M          | [D6N    |        |                    |
| UK Postal (Royal mail)     | [DG7   | [DG8          | [DG9    |        |                    |
| 4-State Mailmark Barcode   | [DGS   | [DGT          | [DGU    |        |                    |

# 9.1.3 **GS1 DataBar**

| Cymbologiae                                                                                            |    | Enable/Disable command |    |        |     |      |          | Default            |  |
|--------------------------------------------------------------------------------------------------------|----|------------------------|----|--------|-----|------|----------|--------------------|--|
| Symbologies                                                                                            | Si | ngle                   | Mu | ltiple | Dis | able | Enable   | Suffix             |  |
| GS1 DataBar  GS1 DataBar Omnidirectional GS1 DataBar Truncated GS1 DataBar Stacked GS1 DataBar Stacked | J9 | ipoo                   | JX | IDQ.   | SJ  | IDO. | <b>√</b> | USB-HID<br>"ENTER" |  |
| GS1 DataBar Limited                                                                                    | JJ | [BC6                   | JY | [BCI   | SK  | [BCU | ✓        | USB-<br>COM        |  |
| GS1 DataBar Expanded GS1 DataBar Expanded GS1 DataBar Expanded Stacked                                 | JK |                        | DR |        | SL  |      | <b>√</b> | RS-232C<br>"CR"    |  |

<sup>\*</sup> Refer to 9.2.1 for convert GS1 and read.

# 9.1.4 **GS1 Composite Code**

| Symbologica                                                                                                                     | Enable/Disab | Default |        |                            |
|---------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------|----------------------------|
| Symbologies                                                                                                                     | Multiple     | Disable | Enable | Suffix                     |
| Composite GS1 DataBar  CC-A  CC-B  Limited CC-A  Expanded CC-A  Expanded CC-B  Composite GS1-128  CC-A  CC-B  CC-C              | [BHE         | [BHF    | ✓      | USB-HID<br>"ENTER"<br>USB- |
| Composite EAN  • EAN-13 CC-A  • EAN-8 CC-A  • EAN-8 CC-B  Composite UPC  • UPC-A CC-A  • UPC-A CC-B  • UPC-B CC-B  • UPC-B CC-B | [D1V         | [D1W    |        | COM<br>RS-232C<br>"CR"     |

<sup>\*</sup> Refer to 9.2.1 for convert GS1 and read.

\* When composite EAN or composite UPC is enabled, EAN or UPC only cannot be read.

#### 9.1.5 **2D Codes**

| Sumbologion           | Enab   | le/Disable con | nmand   | De     | efault             |
|-----------------------|--------|----------------|---------|--------|--------------------|
| Symbologies           | Single | Multiple       | Disable | Enable | Suffix             |
| PDF417                | [BC3   | [BCF           | [BCR    | ✓      |                    |
| MicroPDF417           | [BC4   | [BCG           | [BCS    |        |                    |
| Codablock F           | [D4R   | [D4P           | [D4Q    |        |                    |
| QR Code               | [BC1   | [BCD           | [BCP    | ✓      | USB-HID            |
| Micro QR              | [D38   | [D2U           | [D2V    | ✓      | "ENTER"<br>/       |
| Data Matrix (ECC 200) | [BC0   | [BCC           | [BCO    | ✓      | USB-COM<br>RS-232C |
| Aztec Code            | [BC5   | [BCH           | [BCT    | ✓      | "CR"               |
| Aztec Runes           | [BF4   | [BF2           | [BF3    |        |                    |
| Chinese-sensible code | [D4K   | [D4L           | [D4M    |        |                    |
| Maxi Code             | [BC2   | [BCE           | [BCQ    |        |                    |

<sup>\*</sup> Refer to 9.2.1 for convert and read GS1 QR code and GS1 Data Matrix.

# 9.1.6 Other Options for Codes

| Symbologies        | Single Multiple |      | Disable | Remark           |
|--------------------|-----------------|------|---------|------------------|
| All codes (1D, 2D) | A               | 04   | В0      | Excluding add-on |
| All 1D codes       | [BCA            | [BCM | [BCY    | Excluding add-on |
| All 2D codes       | [BCB            | [BCN | [BCZ    | *1, *2           |

<sup>\*1</sup> PDF417, Codablock F, QR Code, Data Matrix(ECC 200), Maxi Code, MicroPDF417, Aztec Code, Composite code, Aztec Runes, Micro QR and Chinese-sensible code

\*2 When 'ALL 2D codes' is enabled, a link flag will be enabled, and UPC/EAN only cannot be read.

## 9.1.7 **OCR**

## ICAO Machine Readable Travel Documents Charts

| Documents                   | Enable | e/Disable con | Default |        |                    |
|-----------------------------|--------|---------------|---------|--------|--------------------|
| Documents                   | Single | Enable        | Disable | Enable | Suffix             |
| Machine readable Passports  | [DJ1   | [DJ2          | [DJ3    |        |                    |
| Machine readable Visa-A     | [DJ4   | [DJ5          | [DJ6    |        | USB-HID<br>"ENTER" |
| Machine readable Visa-B     | [DJ7   | [DJ8          | [DJ9    |        | /<br>USB-COM       |
| Official Travel Documents 1 | [DJA   | [DJB          | [DJC    |        | RS-232C<br>"CR"    |
| Official Travel Documents 2 | [DJD   | [DJE          | [DJF    |        |                    |

<sup>\*</sup> ICAO travel document can be read regardless of the image direction because the format is fixed.

#### OCR free edit

To free edit standard OCR font and read, refer to 9.2.6 OCR free edit.

For advanced setting, please check the separate sheet "Data Edit Programing Manual".

# 9.2 Setting of Code Common Options

#### 9.2.1 **GS1 Convert**

FNC1 that indicate variable length termination will not be transmitted when reading GS1 symbol (GS1-128, GS1 DataBar, GS1 DataBar Composite, GS1 DataMatrix, GS1 QR Code) label with default setting. This is because FNC1 is not included in ASCII. For GS1 conversion, in order to analyses the GS1 data at the host side, convert valuable length data termination FNC1 to "Ctrl+]" and key outputs for USB-HID, and for USB-COM and RS-232C, convert to GS(0x1D) and outputs. However, if the last of valuable length data is AI data, FNC1 does not exist and GS is not outputted.

<Initial setting status>

|  | FNC1<br>(Non-output) | AI | Data<br>(Fixed length) | Al Data<br>(Variable<br>length) | FNC1<br>(Non-output) | ••• | Al | AI Data<br>(Variable length) |
|--|----------------------|----|------------------------|---------------------------------|----------------------|-----|----|------------------------------|
|--|----------------------|----|------------------------|---------------------------------|----------------------|-----|----|------------------------------|

#### <GS1 after conversion>

· For USB-HID

| AIM-II | Al | Data<br>(Fixed length) | Al Data<br>(Variable<br>length) | Ctrl+]<br>(Key output) |  | Al | Al Data<br>(Variable length) |  |
|--------|----|------------------------|---------------------------------|------------------------|--|----|------------------------------|--|
|--------|----|------------------------|---------------------------------|------------------------|--|----|------------------------------|--|

#### For USB-COM and RS-232C

| AIM-ID<br>(output) | Al | Data<br>(Fixed length) | Al Data<br>(Variable | GS(0x1D)<br>(Output) | <br>Al | Al Data<br>(Variable length)            |
|--------------------|----|------------------------|----------------------|----------------------|--------|-----------------------------------------|
| ( o arth art)      |    | (                      | length)              | ( •,)                |        | ( " " " " " " " " " " " " " " " " " " " |


<sup>\*</sup> For AIM-ID, refer to 11.1.2.

GS1 conversion setting can be set by following menu / command.

| GS1 conversion supported symbologies                    | Item        | Command | Command description    | Initial setting |
|---------------------------------------------------------|-------------|---------|------------------------|-----------------|
| GS1-128<br>GS1 DataBar                                  |             | [X/0    | Disable GS1 conversion | ✓               |
| GS1 DataBar Composite<br>GS1 Data Matrix<br>GS1 QR Code | GS1 Convert | [X/4    | Enable GS1 conversion  |                 |

#### ■ To process and output GS1 conversion data within the scanner.

Our application tool "UniversalConfig" enables processing and outputting GS1 symbol data.



## 9.2.2 Positive and Negative Image of Barcodes (1D code common)

Normally, the barcode is printed in black on white background, but there a case with white on black background. Black on white background is called normal (positive) barcode and white on black background is called negative barcode.

Positive Image of Code 128



Negative Image of Code 128



Following are the positive and negative barcode reading setting.

| Code                 | Item         | Command |                                 | Description                                       | Default |
|----------------------|--------------|---------|---------------------------------|---------------------------------------------------|---------|
|                      | Positive and |         | Q0                              | Decode positive bar codes only.                   | ✓       |
| 1D Negative Image of | [DLA         | Q1      | Decode negative bar codes only. |                                                   |         |
|                      | Barcodes     |         | Q2                              | Decode positive bar codes and negative bar codes. |         |

<sup>\*</sup> It is strongly recommended to enable only the required codes and options for best reading performance.

#### 9.2.3 Redundancy (1D code common)

When redundancy is enabled, a 1D code has to be scanned and decoded multiple times and the results must be the same before it considered correctly decoded. The redundancy count is the number of times that the code has to be scanned in addition to the first scan. Selecting a higher redundancy count reduces the probability of reading errors, but it makes the output response slower. With high

quality printed codes, the default setting is enough to ensure the reliability.

| Item           | Command | Description                 | Default |
|----------------|---------|-----------------------------|---------|
|                | X0      | Read 1 time, redundancy = 0 |         |
|                | X1      | Read 2 time, redundancy = 1 |         |
|                | X2      | Read 3 time, redundancy = 2 |         |
|                | Х3      | Read 4 time, redundancy = 3 | ✓       |
| Redundancy (*) | BS      | Read 5 time, redundancy = 4 |         |
|                | BT      | Read 6 time, redundancy = 5 |         |
|                | BU      | Read 7 time, redundancy = 6 |         |
|                | BV      | Read 8 time, redundancy = 7 |         |
|                | BW      | Read 9 time, redundancy = 8 |         |

<sup>\*</sup> This setting only affects the reading of 1D barcodes. 2D codes are not affected by this redundancy setting

#### 9.2.4 Add-on waiting time

The scanner search valid UPC/EAN add-on code within the selected time. If effective add-on code is found, scanner sends data immediately. If there is nothing after the code, scanner sends data without add-on. If there is something after the code, but not valid add-on code, reader ignores the code. "Supported code"

• UPC 2 digits / 5 digits add-on and GS1 composition symbol

• EAN/JAN 2digits / 5 digits add-on and GS1 composition symbol.

| Item                | Command | Command description              | Initial Setting |
|---------------------|---------|----------------------------------|-----------------|
| Add-on waiting time | XA      | Add-on standby mode invalid      |                 |
|                     | XB      | Add-on standby mode 0.25 seconds |                 |
|                     | XC      | Add-on standby mode 0.5 seconds  | ✓               |
|                     | XD      | Add-on standby mode 0.75 seconds |                 |

# 9.2.5 ECI Protocol Output

This allows setting whether to output data relates to ECI (Extended Channel Interpretation) protocol which is within 2D code (QR code, Data Matrix, Aztec Code, Maxi Code) data.

For the data that ECI protocol exists, ECI number is indicated with a 6-digits number following the back-slack and 2 back-lash indicates back-slash.

To not to output ECI protocol, change the data career identifier to ID not using ECI protocol, delete the 6-digits number following the back-slash and replace the 2 back-slashes to 1 back-slash.

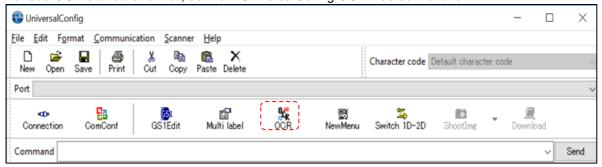
"Supported Code" QR Code, Data Matrix, Aztec Code, Maxi Code

Output example)



Output: ]Q2\000001test\\test

Not output: ]Q1test\test


\*Back-slash: '\'

Setting command are as follows;

| Item                | Command | Description             | Default |
|---------------------|---------|-------------------------|---------|
| ECI protocol output | [DLE    | Not output ECI protocol | ✓       |
| setting             | [DLF    | Output ECI protocol     |         |

### 9.2.6 OCR Free Edit

To read OCR standard format, set from UniversalConfig OCR free edit function.



Numerical value / alphabet / symbol of up to 40 digits and 2 rows can be set.



<sup>\*</sup> For advanced setting, please check the separate sheet "Data Edit Programing Manual".

<sup>\*</sup> Please contact to the sales offices for the items cannot set.

# 9.3 Setting of Code Specific Options

### 9.3.1 **UPC**

UPC code is a barcode for distribution industry established by the United States Uniform Code Council Inc.



#### **UPC-A Overview**

Following are the UPC-A configuration.

| Tollowing are the OF C-A configuration. |                                                 |  |
|-----------------------------------------|-------------------------------------------------|--|
| Item                                    | Overview                                        |  |
| Character set                           | Numeric (0-9)                                   |  |
| Number of digits                        | 12 digits (11 digits + CD 1 digit) fixed length |  |
| CD (check digit) check method           | Modulus 10 / Wait 3                             |  |

### Transfer data format

| Leading "0" | Data 11 digits | CD 1 digit |
|-------------|----------------|------------|

<sup>\*</sup>Setting to 13 digits transfer data format that transfer a leading "0" and CD, the format becomes compatible with JAN / EAN-13.

### Setting items

### UPC-A Add-on 2 digits / 5 digits

UPC-A add-on 2 digits / 5 digits is a barcode of UPC-A plus 2 digits or 5 digits supplement code.

\* When Add-on is enabled, 2D scanner needs Add-on code to be within the read range or fails to read. If it is not within the range, after Add-on waiting time, it reads as UPC or EAN. When Add-on is enabled and reading only UPC/EAN, **reading response will decrease**.

Transfer data format (UPC-A Add-on 2 digits)

| Leading "0" Data 11 digits CD 1 digit Add-on 2 digits |
|-------------------------------------------------------|
|-------------------------------------------------------|

Transfer data format (UPC-A Add-on 5 digits)

| Leadi | ng "0" | Data 11 digits | CD1 digit | Add-on 5 digits |
|-------|--------|----------------|-----------|-----------------|
|-------|--------|----------------|-----------|-----------------|

### **UPC-A CD transfer / front "0" transfer**

This allows you to set whether or not to transmit CD (check digit) and a leading "0".

The 13 digits transfer data format that transfer a leading "0" and CD, the format becomes compatible with JAN / EAN-13.

### **UPC-E Overview**



Following are the UPC-E configuration.

| Item                          | Overview                                      |
|-------------------------------|-----------------------------------------------|
| Character set                 | Numeric (0-9)                                 |
| Number of digits              | 7 digits (6 digits + CD 1 digit) fixed length |
| CD (check digit) check method | Modulus 10 / Wait 3                           |

Transfer data format

| Leading "0" | Data 6 digits | CD 1 digits |
|-------------|---------------|-------------|
|-------------|---------------|-------------|

# UPC-E Add-on 2 digits / 5 digits

UPC-E Add-on 2 digits / 5 digits is a barcode of UPC-E plus 2 digits or 5 digits supplement code.

Transfer data format (UPC-E Add-on 2 digits)

|  | Leading "0" | Data 6 digits | CD 1 digit | Add-on 2 digits |
|--|-------------|---------------|------------|-----------------|
|--|-------------|---------------|------------|-----------------|

Transfer data format (UPC-E Add-on 5 digits)

| Leading "0" | Data 6 digits | CD 1 digit | Add-on 5 digits |
|-------------|---------------|------------|-----------------|

# **UPC-E CD transfer / front "0" transfer**

This allows you to set whether or not to transmit CD (check digit) and a leading "0". The 8 digits transfer data format that transfer a leading "0" and CD, the format becomes compatible with JAN / EAN-8.

# Convert UPC-E to UPC-A format and transfer

Transfer setting to UPC-A format is possible.

| Code     | Item                    | Command | Command Description                                                |          |
|----------|-------------------------|---------|--------------------------------------------------------------------|----------|
|          |                         | E2      | UPC-A, Leading zero, transmit CD                                   |          |
|          | UPC-A Leading           | E3      | UPC-A, No leading zero, transmit CD                                | ✓        |
|          | zero CD<br>transmission | E4      | UPC-A, Leading zero, not transmit CD                               |          |
|          | tranomicolon            | E5      | UPC-A, No leading zero, not transmit CD                            |          |
| UPC-A    |                         | J2      | Enable single UPC Add-on 2                                         |          |
| Add-on 2 | Add-on 2 digits         | R2      | Enable UPC Add-on 2                                                |          |
|          |                         | [X4C    | Disable UPC Add-on 2                                               | ✓        |
|          |                         | J3      | Enable single UPC Add-on 5                                         |          |
|          | Add-on 5 digits         | R3      | Enable UPC Add-on 5                                                |          |
|          |                         | [X4D    | Disable UPC Add-on 5                                               | ✓        |
|          |                         | E6      | UPC-E , Leading zero, transmit CD, transfer digits 8 digits        |          |
|          | UPC-E Leading           | E7      | UPC-E , No leading zero, transmit CD, transfer digits 7 digits     | ✓        |
| UPC-E    | transmission            | E8      | UPC-E , Leading zero, not transmit CD, transfer digits 7 digits    |          |
|          |                         | E9      | UPC-E , No leading zero, not transmit CD, transfer digits 6 digits |          |
|          | UPC-A, E                | 6Q      | Transmit UPC-E                                                     | <b>✓</b> |
|          | conversion              | 6P      | Transmit as UPC-A                                                  |          |

### 9.3.2 **EAN/JAN**

EAN/JAN-13 and EAN/JAN-8 are standardized as common product symbol in the distribution industry. There are 13 digits standard version and 8 digits shorten version.

### **EAN/JAN-13 Overview**



Following are the EAN/JAN-13 configuration.

| Item                          | Overview                                        |
|-------------------------------|-------------------------------------------------|
| Character set                 | Numeric (0-9)                                   |
| Number of digits              | 13 digits (12 digits + CD 1 digit) fixed length |
| CD (check digit) check method | Modulus 10 / Wait 3                             |

# Transfer data format

| Data 12 digits | CD 1 digit |
|----------------|------------|
|                | _          |

# • Setting items

### EAN/JAN-13 Add-on 2 digits / 5 digits

EAN/JAN-13 Add-on 2 digits / 5 digits is the barcode of EAN/JAN -13 plus 2 digits or 5 digits supplement code.

\* When Add-on is enabled, 2D scanner needs Add-on code to be within the read range or fails to read. If it is not within the range, after Add-on waiting time, it reads as UPC or EAN. When Add-on is enabled and reading only UPC/EAN, **reading response will decrease**.

Transfer data format (EAN/JAN -13 Add-on 2 digits)

| Data 12 digits | CD 1 digit | Add-on 2 digits |
|----------------|------------|-----------------|

### Transfer data format (EAN/JAN -13 Add-on 5 digits)

| Data 12 digits | CD 1 digit | Add-on 5 digits |
|----------------|------------|-----------------|

### EAN/JAN -13 CD transfer

Whether to transfer EAN/JAN-13 CD (check digit) or not is configurable.

### EAN-13 forced add-on setting

EAN-13 with a leading 3 digits 378/379/529/414/419/434/439/977/978 can be forcibly handles as "with add-on". When enabled, the barcode without the add-on which is the condition of a leading 3 digits cannot be read.

#### **ISBN** conversion

When ISBN conversion is enabled, it converts the data with a leading "978" or "979" of EAN-13. ISBN conversion re-calculates the CD by omitting a leading 3 digits and outputs it in 10 digits. If CD is 10, it outputs X.

Example) ISBN conversion of EAN-13 "9791230671184"; converts it to "1230671188" and outputs it. ISBN conversion of EAN-13 "9780123782830"; converts it to "012378283X" and outputs it.

### **ISSN** conversion

When ISSN conversion is enabled, it converts data with a leading "977" of EAN-13. ISSN conversion will re-calculate CD by omitting leading 3 digits and outputs it in 8 digits.

#### ISMN conversion

When ISMN conversion is enabled, it converts data with a leading "9790" of EAN-13.

ISMN conversion will convert a leading 4 digits to "M" and outputs it in 10 digits.

When ISMN conversion is disabled and ISBN conversion is enabled, EAN-13 with a leading "9790" will be converted to ISBN format.

Example) ISMN conversion of EAN-13 "9790230671187"; converts it to "M230671187" and outputs it.

### **EAN/JAN-8 Overview**



Following are the EAN/JAN-8 configuration.

| Item             | Overview                                      |
|------------------|-----------------------------------------------|
| Character set    | Numeric (0-9)                                 |
| Number of digits | 8 digits (7 digits + CD 1 digit) fixed length |

### Transfer data format

### • Setting items

# EAN/JAN -8 Add-on 2 digits / 5 digits

EAN/JAN-8 Add-on 2 digits / 5 digits is the barcode of EAN/JAN-8 plus 2 digits or 5 digits supplement code.

\*When Add-on is enabled, 2D scanner needs Add-on code to be within the read range or fails to read. If it is not within the range, after Add-on waiting time, it reads as UPC or EAN.

When Add-on is permitted and reading only UPC/EAN, reading response will decrease.

Transfer data format (EAN/JAN-8 Add-on 2digits)

|               | 1          | 3 /             |
|---------------|------------|-----------------|
| Data 7 digits | CD 1 digit | Add-on 2 digits |

Transfer data format (EAN/JAN-8 Add-on 5 digits)

|               | ,          | . · · · · · · · · · · · · · · · · · · · |
|---------------|------------|-----------------------------------------|
| Data 7 digits | CD 1 digit | Add-on 5 digits                         |

# EAN/JAN -8 CD transfer

Whether to transfer EAN/JAN-8 CD (check digit) or not is configurable.

Following are EAN/JAN-13 optional settings.

| Symbologies         | Item               | Command | Description                                                                         | Default  |
|---------------------|--------------------|---------|-------------------------------------------------------------------------------------|----------|
|                     | CD<br>Transmission | 6K      | Transmit EAN/JAN -13 CD                                                             | ✓        |
|                     |                    | 6J      | Not transmit EAN/JAN-13 CD                                                          |          |
|                     | Add-on<br>2 digits | JH      | Singly enable EAN/JAN -13 Add-on 2 digits                                           |          |
| E A NI / I A NI 4 O |                    | JV      | Add enable EAN/JAN -13 Add-on 2 digits                                              |          |
| EAN/JAN-13          | _ a.g.to           | [X4N    | Disable EAN/JAN -13 Add-on 2 digits                                                 |          |
|                     |                    | JI      | Singly enable EAN/JAN -13 Add-on 5 digits                                           |          |
|                     | Add-on<br>5 digits | JW      | Add enable EAN/JAN -13 Add-on 5 digits                                              |          |
|                     | o algito           | [X4P    | Disable EAN/JAN -13 Add-on 5 digits                                                 |          |
|                     |                    | -G      | When EAN-13 start at 378/379 / 529;<br>Enable EAN forced add-on                     |          |
| EAN -13             | EAN-13             | -H      | When EAN-13 start at 378/379 / 529;<br>Disable EAN forced add-on                    | ✓        |
|                     | Forced add-on      | -C      | When EAN-13 start at 434 / 439 / 414 / 419 / 977 / 978;<br>Enable EAN forced add-on |          |
|                     |                    | -D      | When EAN-13 start at 434 / 439 / 414 / 419 / 977 / 978; Disable EAN forced add-on   | <b>✓</b> |
|                     | 1001               | IB      | Disable ISBN conversion                                                             | ✓        |
|                     | ISBN<br>Conversion | IA      | Enable ISBN conversion                                                              |          |
|                     | Conversion         | IK      | When possible, enable ISBN conversion                                               |          |
|                     |                    | HN      | Disable ISSN conversion                                                             | ✓        |
|                     | ISSN<br>Conversion | НО      | Enable ISSN conversion                                                              |          |
|                     | CONVENSION         | 4V      | When possible, enable ISSN conversion                                               |          |
|                     |                    | Ю       | Disable ISMN conversion                                                             | ✓        |
|                     | ISMN<br>Conversion | IP      | Enable ISMN conversion                                                              |          |
|                     | 201170101011       | IQ      | When possible, enable ISMN conversion                                               |          |

Following are EAN/JAN-8 option al settings.

| Symbologies | Item               | Command | Description                             | Default |
|-------------|--------------------|---------|-----------------------------------------|---------|
|             | CD                 | 61      | Transmit EAN/JAN-8 CD                   | ✓       |
|             | Transmission       | 6H      | Not transmit EAN/JAN-8 CD               |         |
|             |                    | JB      | Singly enable EAN/JAN-8 Add-on 2 digits |         |
| EANI/IANI O | Add-on<br>2 digits | JP      | Add enable EAN/JAN-8 Add-on 2 digits    |         |
| EAN/JAN-8   |                    | [X4M    | Disable EAN/JAN-8 Add-on 2 digits       |         |
|             |                    | JC      | Singly enable EAN/JAN-8 Add-on 5 digits |         |
|             | Add-on<br>5 digits | JQ      | Add enable EAN/JAN-8 Add-on 5 digits    |         |
|             | 2 a.g.to           | [X4O    | Disable EAN/JAN-8 Add-on 5 digits       |         |

# 9.3.3 Code 39 and It. Pharm (Code 32)

Code 39 is a barcode developed by Intermec and has been standardized as ISO/IEC 16388. It is mainly used in the industrial fields.

### Code39 Overview



Following are the Code 39 configuration.

| item              | Overview                                                 |
|-------------------|----------------------------------------------------------|
| Character set     | Numeric (0-9) Symbol (- , Space \$ / + %) Alphabet (A-Z) |
| Start / Stop code | *                                                        |
| Digits            | Variable length                                          |

#### Transfer data format

| Start code "*" | Data Variable length | CD | Stop code "*" |
|----------------|----------------------|----|---------------|
|----------------|----------------------|----|---------------|

### Setting items

### Calculate Code 39 CD

Whether to check CD (check digit) or not is configurable.

#### **Transfer Code 39 CD**

Whether to transfer CD (check digit) or not is configurable.

### Transfer Code 39 Start / Stop Code

Whether to transfer Start / Stop code or not is configurable.

# **Code 39 Various Conversion Settings**

Standard Code39:

Send data character as it is.

### Full ASCII Code39:

This setting converts the correct combination of the data character to Full ASCII and transmits it. If an incorrect combination is found in the character, it will not be transmitted.

### When possible Full ASCII Code39:

This setting converts the specified combination of the data character to Full ASCII and transmits it. Incorrect combination will be transmitted without converting, as it is.

# Italian Pharmaceutical:

This setting converts Code39 data to Italian Pharmaceutical format.

Italian Pharmaceutical format is a fixed length containing 1 digit of mandatory check digit after 8 digits numeric data.

When not adapting to Italian Pharmaceutical, it will not be sent.

### When possible Italian Pharmaceutical:

This setting convert converts Code39 data to Italian Pharmaceutical format.

When not adapting to Italian Pharmaceutical, it will be send with standard Code39 etc.

Code 39 Optional setting are as follows.

| Code      | Item                  | Command | Description                          | Default |
|-----------|-----------------------|---------|--------------------------------------|---------|
|           | OD ab a ab            | C1      | Not check CD                         | ✓       |
|           | CD check              | C0      | Check CD                             |         |
|           | CD                    | D9      | Transmit Code39 CD                   | ✓       |
|           | transmission          | D8      | Not transmit Code39 CD               |         |
|           | ST/SP                 | D1      | Not transmit ST/SP                   | ✓       |
|           | transmission          | D0      | Transmit ST/SP                       |         |
| Code 39   |                       | D5      | Normal Code 39                       | ✓       |
| It. Pharm | Full ASCII conversion | D4      | Full ASCII Code 39                   |         |
| (Code 32) |                       | +K      | Full ASCII Code 39 if possible       |         |
|           |                       | D6      | It. Pharmaceutical only              |         |
|           | It Dharm              | D7      | It. Pharmaceutical if possible       |         |
|           | It. Pharm             | DA      | Not transmit leading A for It. Pharm | ✓       |
|           |                       | DB      | Transmit leading A for It. Pharm     |         |
|           | Concetenation         | +M      | Disable concatenation                | ✓       |
|           | Concatenation         | +L      | Enable concatenation                 |         |

### 9.3.4 Codabar

Codabar is relatively early stage barcode developed by Monarch Marking Company in 1972 following 2 of 5

### **Codabar Overview**



Following are the Codabar configuration.

| Item                          | Overview                                   |
|-------------------------------|--------------------------------------------|
| Character set                 | Numeric (0-9)<br>Symbol (- \$ : / , +)     |
| Start / Stop code             | A, B, C, or D                              |
| Digits                        | Variable length                            |
| CD (check digit) check method | Check digits are not much used in general. |

### Transfer data format

| Start code 1 digit | Data Variable<br>length | CD | Stop code 1 digit |
|--------------------|-------------------------|----|-------------------|
|--------------------|-------------------------|----|-------------------|

### Setting items

### Codabar (NW-7) read mode

### Standard mode:

It consists of 1 barcode.

### ABC mode:

ABC is an acronym of American Blood Commission.

It consists of 2 side by side barcodes. (Margin is necessary.)

When the barcode's first stop character and the second start character is D, it will be concatenated and sent. Two D character will not be sent.

### CX mode:

It consists of 2 side by side barcodes. (Margin is necessary.)

When the barcode's first stop character is C and the second start character is B, it will be concatenated and sent. B and C character will not be sent.

# Codabar CD check

In Codabar, Modulus 16 is generally used.

### **Codabar CD transfer**

Whether to transfer CD (check digit) or not is configurable.

### Start / Stop code transfer

Whether to transfer start / stop code or not is configurable. Also, it can convert the code and transfers when transferring start / stop code.

Codabar option settings are as follows.

| Code               | Item         | Command | Description                                                                                                          | Default |
|--------------------|--------------|---------|----------------------------------------------------------------------------------------------------------------------|---------|
|                    | CD aback     | H7      | Not check CD                                                                                                         | ✓       |
|                    | CD check     | H6      | Check CD                                                                                                             |         |
|                    | CD           | H8      | Transmit Codabar CD                                                                                                  | ✓       |
|                    | transmission | H9      | Not transmit Codabar CD                                                                                              |         |
|                    |              | F0      | Not transmit Start / Stop code                                                                                       | ✓       |
|                    |              | F1      | Start / Stop code: ABCD/TN*E                                                                                         |         |
|                    |              | F2      | Start / Stop code: abcd/tn*e                                                                                         |         |
|                    | ST/SP        | F3      | Start / Stop code: ABCD/ABCD                                                                                         |         |
| Codabar            | transmission | F4      | Start / Stop code: abcd/abcd                                                                                         |         |
|                    |              | HJ      | Start / Stop code:<br><dc1><dc2><dc3><dc4><br/>/<dc1><dc2><dc3><dc4></dc4></dc3></dc2></dc1></dc4></dc3></dc2></dc1> |         |
|                    | Space        | HE      | Disable space insertion                                                                                              | ✓       |
|                    | insertion    | HD      | Enable space insertion                                                                                               |         |
| ABC, CX conversion |              | HA      | Enable only Codabar normal mode                                                                                      | ✓       |
|                    | ABC, CX      | H4      | Enable only ABC code                                                                                                 |         |
|                    | conversion   | H5      | Enable only CX code                                                                                                  |         |
|                    |              | H3      | Enable Codabar / ABC and CX                                                                                          |         |

### 9.3.5 Interleaved 2 of 5 and S-Code

Interleaved 2 of 5 is a symbol standardized by ISO/IEC 16390 as the standard distribution symbol ITF.

### Interleaved 2 of 5 Overview



14/012343016/

Following are the Interleaved 2 of 5 configurations.

| Item                          | Overview                      |
|-------------------------------|-------------------------------|
| Character set                 | Numeric (0-9)                 |
| Start / Stop code             | Hidden character              |
| Digits                        | Variable length (even number) |
| CD (check digit) check method | Modulus 10 / Wait 3           |

### Transfer data format

| Data variable length | CD |
|----------------------|----|
|----------------------|----|

### • Setting items

# Interleaved 2 of 5 CD check

Whether to check CD (check digit) or not is configurable. This setting also configures Interleaved 2 of 5, Industrial 2 of 5, S-Code and Matrix 2 of 5 CD check or not.

### Interleaved 2 of 5 CD transmit

Whether to transfer CD (check digit) or not is configurable. This setting also configures Interleaved 2 of 5, Industrial 2 of 5, S-Code and Matrix 2 of 5 CD transfer or not.

### Industrial 2 of 5 space check

Whether to enable / disable the space (inter-character gap) check of Industrial 2 of 5 which has large or irregular spaces can be set.

Following are the Interleaved 2 of 5 and Industrial 2 of 5 optional setting.

| Code                  | Item              | Command | Description                               | Default |
|-----------------------|-------------------|---------|-------------------------------------------|---------|
| 0.5                   | CD abook          | G0      | Not check CD                              | ✓       |
|                       | CD check          | G1      | Check CD                                  |         |
|                       | CD transmission   | E0      | Transmit CD                               | ✓       |
| Interleaved<br>2 of 5 | CD transmission   | E1      | Not transmit CD                           |         |
| S-code                |                   | GK      | Disable space check for Industrial 2 of 5 |         |
|                       |                   | GJ      | Enable space check for Industrial 2 of 5  | ✓       |
|                       | S-Code conversion | GH      | Not transmit S-Code as Interleaved 2 of 5 | ✓       |
|                       |                   | GG      | Transmit S-Code as Interleaved 2 of 5     |         |

### 9.3.6 Code128

Code128 is developed by Computer Identix Inc. in the USA in 1981.

Code128 is a symbol standardized as USS-CODE128. Because it can encode ASCII128 characters, it is called Code128.

#### Code128 Overview



Following are the Code128 configuration

| Item                          | Overview                                                                                        |
|-------------------------------|-------------------------------------------------------------------------------------------------|
| Character set                 | ASCII128 character Function character (FNC1-4) Code set selection character (A, B, C and Shift) |
| Start / Stop code             | Hidden character Start pattern 3 types (A,B and C), Stop pattern 1type                          |
| Digits                        | Variable length                                                                                 |
| CD (check digit) check method | Modulus 103                                                                                     |

### Transfer data format

Data (variable length)

# • Setting items

### **GS1** conversion

Disable / Enable GS1-128 GS1 conversion is configurable.

Refer to 9.2.1 for setting detail.

### **Concatenation of Code 128**

When Code128 data's leading is FNC2 character, concatenate or not can be set.

Reading the barcode that contains FNC2 character in leading of Code128 data, concatenate the data by omitting the leading FNC2.

When reading the barcode that does not contains FNC2 character in leading of Code128, it concatenates the data to the end of data that is buffering to the scanner, and send entire buffer. The reading time is updated every time 1 label is read, but if the reading is not completed within the reading time, the buffered data will be discarded.

The maximum number of character that can be concatenated at a time is 400 characters.

Following are the Code 128 optional setting.

| Code     | Item           | Command | Description                | Default |
|----------|----------------|---------|----------------------------|---------|
| Code 128 | GS1 conversion | OF      | Disable GS1-128            | ✓       |
|          |                | JF      | Enable GS1-128 only        |         |
|          |                | OG      | Enable GS1-128 if possible |         |
|          | Concatenation  | MP      | Disable concatenation      | ✓       |
|          |                | МО      | Enable concatenation       |         |

# 9.3.7 **IATA**

| Code                      | Item            | Command         | Description              | Default |
|---------------------------|-----------------|-----------------|--------------------------|---------|
|                           |                 | 4H              | Not check CD             | ✓       |
| CD check  CD transmission | CD shoot        | 41              | Check FC / SN only       |         |
|                           | CD check        | 4J              | Check FC / CPN / SN      |         |
|                           |                 | 4K              | Check FC / CPN / AC / SN |         |
|                           | 4M              | Not transmit CD |                          |         |
|                           | CD transmission | 4L              | Transmit CD              | ✓       |

# 9.3.8 MSI/Plessey

| Code                          | Item            | Command | Description                | Default |
|-------------------------------|-----------------|---------|----------------------------|---------|
|                               |                 | 4A      | Not check CD               |         |
|                               |                 | 4B      | Check 1 CD = MOD 10        | ✓       |
|                               | CD check        | 4C      | Check 2 CD = MOD 10/MOD 10 |         |
|                               | CD check        | 4D      | Check 2 CD = MOD 10/MOD 11 |         |
| MSI/ Plessey  CD transmission |                 | 4R      | Check 2 CD = MOD 11/MOD 10 |         |
|                               |                 | 4S      | Check 2 CD = MOD 11/MOD 11 |         |
|                               |                 | 4G      | Not transmit CD            |         |
|                               | CD transmission | 4E      | Transmit CD 1              | ✓       |
|                               |                 | 4F      | Transmit CD 1 and CD 2     |         |

# 9.3.9 **UK/Plessey**

| Code                | Item            | Command | Description               | Default |
|---------------------|-----------------|---------|---------------------------|---------|
| UK/ Plessey Space i | 00.1            | 40      | Not transmit CD           |         |
|                     | CD transmission | 4N      | Transmit CD               | ✓       |
|                     | Space insertion | DO      | Disable space insertion   | ✓       |
|                     |                 | DN      | Enable space insertion    |         |
|                     | X conversion    | DP      | Conversion A -> X disable | ✓       |
|                     |                 | DQ      | Conversion A -> X enable  |         |

# 9.3.10 **Telepen**

| Code    | Item        | Command | Description  | Default |
|---------|-------------|---------|--------------|---------|
| Tolonon | Conversion  | D2      | Numeric mode | ✓       |
| Telepen | output mode | D3      | ASCII mode   |         |

# 9.3.11 **Code 11**

| Code                              | Item            | Command         | Description          | Default |
|-----------------------------------|-----------------|-----------------|----------------------|---------|
| CD check Code 11  CD transmission |                 | BLF             | Not check CD         |         |
|                                   | CD shoot        | BLG             | Check 1CD            |         |
|                                   | CD check        | BLH             | Check 2CD            |         |
|                                   |                 | BLI             | Check auto 1 or 2 CD | ✓       |
|                                   | BLJ             | Not transmit CD | ✓                    |         |
|                                   | CD transmission | BLK             | CD transmit          |         |

# 9.3.12 Korean Postal Authority

| Code                                  | Item                               | Command | Description                  | Default |
|---------------------------------------|------------------------------------|---------|------------------------------|---------|
|                                       | CD transmission                    | *+      | CD transmit                  |         |
| Vorgon                                | CD transmission                    | *-      | Not transmit CD              | ✓       |
| Korean<br>Postal<br>Authority<br>code | Transmit dash  Upside down reading | *.      | Transmit dash                | ✓       |
|                                       |                                    | */      | Not transmit dash            |         |
|                                       |                                    | *9      | Upside down reading enabled  |         |
|                                       |                                    | *8      | Upside down reading disabled | ✓       |

# 9.3.13 **GS1 DataBar**

GS1 DataBar (formerly RSS) is a symbol developed close to GS1, and has 3 types 7 kinds and is a relatively new symbol. GS1 DataBar has characteristics of being able to express it in a smaller space. It is a symbol standardized by ISO/IEC 24724:2011.

### **GS1 DataBar Overview**

# 

Following are the GS1 DataBar configuration.

| ollowing are the GGT Databar configuration. |                                                                                                                                                                                        |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Item                                        | Overview                                                                                                                                                                               |  |  |
| Character set                               | GS1 DataBar Omnidirectional and GS1 DataBar Limited: Numeric (0-9)<br>GS1 DataBar Expanded: capital / small character alphabet, numbers, 20<br>types symbol, function character (FNC1) |  |  |
| Digits                                      | GS1 DataBar Omnidirectional and GS1 DataBar Limited: Application identifier "01" and 14 digits GS1 DataBar Expanded: number 74 digits and alphabet 41 digits                           |  |  |
| Check sum                                   | Check sum is always checked, but not sent. GS1 DataBar Omnidirectional: Modulus 79 GS1 DataBar Limited: Modulus 89 GS1 DataBar Expanded: Modulus 211                                   |  |  |
| CD check                                    | GS1 DataBar Omnidirectional and GS1 DataBar Limited: Modulus 10/ Wait 3                                                                                                                |  |  |

# Transfer data format (GS1 DataBar Omnidirectional, GS1 DataBar Limited)

| AI "01" | Data (13 digits) | CD (1 digit) |
|---------|------------------|--------------|
|---------|------------------|--------------|

# Transfer data format (GS1 DataBar Expanded)

| Data (1-74 digits) |  |  |  |
|--------------------|--|--|--|
|--------------------|--|--|--|

### • Setting items

### **GS1** conversion

Disable / Enable GS1 DataBar's GS1 conversion is configurable. Refer to 9.2.1 for setting detail.

# 9.3.14 Composite GS1 DataBar

Composite GS1 symbol is a code developed by GS1 for medical use and standardized by ISO/IEC 24723. Indicate symbol composite to GS1 DataBar, GS1-128 and UPC/EAN. In the market, other than Composite GS1 DataBar is not much used.

# **Composite GS1 DataBar Overview**

(17) 201607 (10) ABCCA

Following are the Composite GS1 configuration.

| rollowing are the Composite GST configuration. |                                                                |  |  |
|------------------------------------------------|----------------------------------------------------------------|--|--|
| Item                                           | Overview                                                       |  |  |
|                                                | ASCII value 0-127 (ISO 646)                                    |  |  |
| Character set                                  | ASCII value 128-255 (ISO 8859, Alphabet No.1, Extend ASCII)    |  |  |
|                                                | Using ECI: many other character sets                           |  |  |
|                                                | CC-A is a revised version of MicroPDF417.                      |  |  |
| Composite                                      | CC-B is normal MicroPDF417.                                    |  |  |
|                                                | CC-C is normal PDF417.                                         |  |  |
|                                                | CC-A: 56 character                                             |  |  |
| Maximum digits                                 | CC-B: 338 character                                            |  |  |
|                                                | CC-C: 2361 character                                           |  |  |
|                                                | 1D part: refer to GS1 DataBar and UPC/EAN                      |  |  |
| Symbol size                                    | Composite part: CC-A and CC-B are same as MicroPDF417. CC-C is |  |  |
|                                                | same as PDF417                                                 |  |  |
| Error correction                               | 1D part: error detection only                                  |  |  |
| LITOI COITECTION                               | Composite par: Reed Solomon error correction                   |  |  |
| Link flags                                     | GS1 DataBar and GS1 128 composite have link flags.             |  |  |
| LIIIK IIays                                    | UPC/EAN composite does not have link flags.                    |  |  |

Transfer data format (CC-A)

| 1D data (1-74 digits)       | Composite data (1-56 digits)   |  |  |  |
|-----------------------------|--------------------------------|--|--|--|
| Transfer data format (CC-B) |                                |  |  |  |
| 1D data (1-74 digits)       | Composite data (1-338 digits)  |  |  |  |
| Transfer data format (CC-C) |                                |  |  |  |
| 1D data (1-74 digits)       | Composite data (1-2361 digits) |  |  |  |

# • Setting item GS1 conversion

Disable/enable GS1 conversion of Composite GS1 DataBar by setting. Refer to <u>9.2.1</u> for details.

# 9.3.15 **PDF 417**

PDF417 is a stack type code developed by Symbol Technology Inc., and is used for international logistics, ID card (overseas) and parts label etc. PDF417 is a symbol standardized also in ISO/IEC 15438:2006.

### **PDF417 Overview**





Following are the PDF417 configuration.

| Item                           | Overview                                                                                                                                |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Character set                  | ASCII value 0-127 (ISO 646) ASCII value 128-255 (ISO 8859-1, Alphabet No.1, Extended ASCII) For MicroPDF 417: many other character sets |  |  |
| Maximum digits (PDF417)        | Text compression: 1850 character  Byte compression: 1108 character  Numeric compression: 2710 character                                 |  |  |
| Maximum digits (MicroPDF417)   | Text compression: 250 character Byte compression: 150 character Numeric compression: 366 character                                      |  |  |
| Symbol size<br>(PDF417)        | Number of lines: 3-90<br>Number of rows: 1-30                                                                                           |  |  |
| Symbol size<br>(MicroPDF417)   | Number of lines: 4-44<br>Number of rows: 1-4                                                                                            |  |  |
| Error correction (PDF417)      | Error correction level 8. The option for error detection only.                                                                          |  |  |
| Error correction (MicroPDF417) | Number of code words for error correction is fixed by the symbol and cannot be changed.                                                 |  |  |

# Transfer data format

Data (variable length)

### • Setting item

MicroPDF417, default is invalid. To enable the setting, refer to 9.1.5.

# 9.3.16 **QR Code**

QR code is a matrix type 2D barcode developed by DENSO WAVE INC., and has characteristics of high speed reading and is used in a wide range of fields. QR code is a symbol standardized to SO/IEC 18004:2000.

### **QR Code Overview**



Following are the QR code configuration.

| Item                              | Overview                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Character set                     | <ol> <li>Numeric data (Numbers 0-9)</li> <li>Alphanumeric data (Numbers 0-9, Capital letter A-Z, 9 special characters: space, \$, %, *, +, -, ., /, :)</li> <li>8 bit byte data (Latin character based on JIS X 0201, character set of 8 bit code for Katakana character.)</li> <li>Chinese character (Character specified by the shift-coded expression of JIS X 0208)</li> </ol> |  |  |
| Maximum digits                    | Alphanumeric data: 4296 character 8 bit data: 2953 character Numeric data: 7089 character Chinese character data: 1817 character                                                                                                                                                                                                                                                   |  |  |
| Symbol size                       | Minimum: 21 x 21 module  Maximum: 177 x 177 module                                                                                                                                                                                                                                                                                                                                 |  |  |
| Error correction                  | Reed Solomon error correction level 4 L:7% M:15% Q:25% H:30%                                                                                                                                                                                                                                                                                                                       |  |  |
| Negative barcode, mirror printing | Negative and mirror printed QR code are readable.                                                                                                                                                                                                                                                                                                                                  |  |  |
| Concatenated code                 | Outputs after reading all concatenated codes.                                                                                                                                                                                                                                                                                                                                      |  |  |

# Transfer data format

Data (variable length)

# • Setting item

# **GS1** conversion

Disable/enable GS1 QR code conversion by setting. Refer to <u>9.2.1</u> for setting detail.

### **ECI protocol output**

Enable/disable output of QR code ECI protocol data by setting. Refer to <u>9.2.5</u> for setting detail.

# Micro QR code overview



Following are the Micro QR code configuration.

| Item                              | Overview                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Character set                     | <ol> <li>Numeric data (numbers 0-9)</li> <li>Alphanumeric data (numbers 0-9, capital characters A-Z, 9 special characters: space, \$, %, *, +, -, ., /, :)</li> <li>8 bit byte data (Latin character based on JIS X 0201, character set of 8 bit code for Katakana character.)</li> <li>Chinese character (Character specified by the shift-coded expression of JIS X 0208)</li> </ol> |  |  |
| Maximum digits                    | Alphanumeric data: 21 character 8 bit data: 15 character Numeric data: 35 character Chinese character data: 9 character                                                                                                                                                                                                                                                                |  |  |
| Symbol size error correction      | Version M1: 11 x 11 module – Error detection only  Version M2: 13 x 13 module – Reed Solomon error correction 2 steps(L, M)  Version M3: 15 x 15 module – Reed Solomon error correction 2 steps(L, M)  Version M4: 17 x 17 module – Reed Solomon error correction 3 steps (L, M, Q)                                                                                                    |  |  |
| Negative barcode, mirror printing | Negative and mirror printed QR code are readable                                                                                                                                                                                                                                                                                                                                       |  |  |

# Transfer data format

Data (variable length)

# • Setting item

None in particular

### 9.3.17 Data Matrix

Data Matrix is a matrix type 2D barcode developed by Idymatrix Corporation, which has characteristics of L-shaped finder and a symbol capable of miniaturizing. It is mainly used for industrial, and is used in a wide range of fields at overseas. Data Matrix is a symbol standardized also in ISO/IEC 16022.

### **Data Matrix Code Overview**





Data Matrix

RectangleMatrixCode

Following are the Data Matrix configuration.

| Item                              | Overview                                                       |  |  |
|-----------------------------------|----------------------------------------------------------------|--|--|
|                                   | ASCII value 0-127 (ISO 646)                                    |  |  |
| Character set                     | ASCII value 128-255 (ISO 8859-1, Alphabet No.1, Expand ASCII)  |  |  |
|                                   | Using ECI: many other character sets                           |  |  |
| Maximum digits                    | Alphanumeric data: 2335 characters                             |  |  |
| (ECC200 square)                   | 8 bit data: 1556 characters                                    |  |  |
| (LOO200 3quaic)                   | Numeric data: 3116 characters                                  |  |  |
| Maximum digits                    | Alphanumeric data: 98 characters                               |  |  |
| (ECC200 rectangle)                | 8 bit data: 47 characters                                      |  |  |
| (LOOZOO reolarigie)               | Numeric data: 72 characters                                    |  |  |
| Symbol size                       | Even rows and even columns, square or rectangle,               |  |  |
| (ECC200)                          | Square: minimum 10 x 10, maximum 144 x 144 module              |  |  |
| (200200)                          | Rectangle: minimum 8 x 18, maximum 16 x 48 module (6 patterns) |  |  |
| Error correction                  | Set automatically                                              |  |  |
| (ECC200)                          | <u> </u>                                                       |  |  |
| Negative barcode, mirror printing | Negative and mirror printed Data Matrix are readable           |  |  |

# Transfer data format

Data (variable length)

### • Setting item

### **GS1** conversion

Disable/enable GS1 Data Matrix conversion by setting. Refer to <u>9.2.1</u> for setting detail.

# **ECI** protocol output

Enable/disable output of Data Matrix ECI protocol data by setting. Refer to <u>9.2.5</u> for setting detail.

# 9.3.18 Aztec Code

Azetc Code is a matric type 2D barcode developed by Welch Allyn Company, and has characteristic of quiet zone unnecessary by fender in the center. Mainly used in tickets and medicals.

# **Aztec Code Summary**



Following are the Aztec configuration.

| Item                     | Overview                                                                                                                       |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Character set            | ASCII value 0-127 (ISO 646) ASCII value 128-255 (ISO 8859-1, Alphabet No.1, Expand ASCII) Using ECI: many other character sets |  |  |
| Maximum number of digits | Alphanumeric data: 3067 characters Number: 3832 characters Byte: 1914 character                                                |  |  |
| Symbol size              | Minimum: 15 x 15 module  Maximum: 151 x 151 module                                                                             |  |  |
| Error correction         | The selectable error correction level is 5% to 95% of the data area.                                                           |  |  |

### Transfer data format

Data (variable length)

# • Setting item

# **ECI** protocol output

Enable/disable output of Aztec Code ECI protocol data by setting. Refer to <u>9.2.5</u> for setting detail.

# 9.4 Setting of Number of Characters

If you are going to read codes of fixed length, it is recommended to configure the scanner for that fixed number of characters. The scanner will verify that codes read are of the correct length and rejects codes that do not have the specified length. The advantage of setting a fixed length is that it provides protection against spurious short scans of codes, possible with code types that do not provide sufficient security against partial scans (e.g. Interleaved 2 of 5). The length checking is done on the code data and is not affected by options such as (not) transmit start/stop character or check digit. Setting the number of characters does not affect fixed length codes, such as EAN-13.

### 9.4.1 Fixed Length ON, Minimum / Maximum Length for Selected Codes

This option enables fixed length and minimum / maximum length checking for each code types and will only affect the specified code types.

Configuration with commands

| Item           | Command      |                        | Description                     | Default<br>(valid range) |
|----------------|--------------|------------------------|---------------------------------|--------------------------|
| Fixed length - | Specify Code | Input length of digits | Fixed length for selected codes | (0.9000)                 |
|                | 9.4.2        | Qa Qb Qc Qd            | Length: (1000a+100b+10c+d)      | (0-8000)                 |

Configuration example Command

Fix Code39 length to 6 digits <Esc>[DC1Q6<CR>

Fix Code39 length to 6 digits and 12 digits <Esc>[DC1Q6[DC1Q1Q2<CR>

Fix Code39 length to 6 digits and Interleaved 2 of 5 to 12 digits <Esc>[DC1Q6[DC4Q1Q2<CR>

Clear fixed length for Code39 <= Esc>[DC1<CR>

Set max length for PDF417 to 20 digits and QR code 125 digits <Esc>[DALQ2Q0[DAJQ1Q2Q5<CR>

# 9.4.2 Command List: Fixed Length ON/Minimum/Maximum Length

Enter the following command followed by a value to set length of each code. When reset settings, the length currently set becomes the default.

| Code type                    | Fixed length | Min length | Max length |
|------------------------------|--------------|------------|------------|
| Reset settings               | [DC0         | [XQG       | [XNG       |
| Code 39                      | [DC1         | [DB1       | [DA1       |
| Codabar                      | [DC2         | [DB2       | [DA2       |
| Industrial 2 of 5            | [DC3         | [DB3       | [DA3       |
| Interleaved 2 of 5           | [DC4         | [DB4       | [DA4       |
| Code 93                      | [DCD         | [DBD       | [DAD       |
| Code 128                     | [DCB         | [DBB       | [DAB       |
| MSI/Plessey                  | [DC8         | [DB8       | [DA8       |
| IATA                         | [DC7         | [DB7       | [DA7       |
| PDF417                       | [DCL         | [DBL       | [DAL       |
| QR code                      | [DCJ         | [DBJ       | [DAJ       |
| Data Matrix                  | [DCH         | [DBH       | [DAH       |
| Maxi code                    | [DCK         | [DBK       | [DAK       |
| Aztec code                   | [DCI         | [DBI       | [DAI       |
| MicroPDF417                  | [DCM         | [DBM       | [DAM       |
| RSS-Expanded (GS1 Databar)   | [DCF         | [DBF       | [DAF       |
| Composite                    | [DCG         | [DBG       | [DAG       |
| GS1-128                      | [DCC         | [DBC       | [DAC       |
| S-Code                       | [DC5         | [DB5       | [DA5       |
| UK/Plessey                   | [DCA         | [DBA       | [DAA       |
| Matrix 2 of 5 / Chinese Post | [DC6         | [DB6       | [DA6       |
| Telepen                      | [DC9         | [DB9       | [DA9       |
| Codablock F                  | [DCO         | [DBO       | [DAO       |
| Code 11                      | [DCE         | [DBE       | [DAE       |
|                              |              |            |            |

# **10 String Options**

This chapter describes the alterations which can be made to the transmitted data string.

The configurations available are:

- 10.1 Prefix / Suffix
- 10.2 Case Conversion

# 10.1 Prefix / Suffix (appending character function)

The following section explains the additional functions that can place informational characters just before the decoded data (pre-data) or be transmitted immediately after the data (post-data).

### **Output Format:**

- Prefix / suffix (up to 4 digits)
  - Specified characters can be added in front of or at the end of the data for each specific symbology.
  - \*1 By default, the prefix is empty and the suffix of all codes is a "CR" character.
  - \*When using 9.2.6 OCR Free Edit or 8.1.4 Data Edit Function, this cannot be set.
- Preamble / Postamble (up to 8 digits)

Specified characters can be added in front of or at the end of the data for all codes.

\*By default, they are empty.

| Preamble     | Prefix<br>for each code | Decoded Data | Suffix (*1)<br>for each code | Postamble    |
|--------------|-------------------------|--------------|------------------------------|--------------|
| Max 8 digits | Max 4 digits            |              | Max 4 digits                 | Max 8 digits |
|              |                         |              |                              |              |

<sup>\*</sup>By default, <CR> is added to suffix with all codes "RZ" command.

# 10.1.1 Program Value:

# • ASCII (Refer to 10.1.4)

All 128 characters

# • Code identification

The code identification is transmitted in OPTICON ID, ISO15424 standard or AIM-ID.

# • Code length

The code length is the number of characters after the output format that is configured with options in "9.3 Setting of Code Specific Options".

# • Scan time

The scan time is the time from the trigger until the data output start.

# 10.1.2 Set Prefix / Suffix

How to add the prefix / suffix is described below.

Configuring with Command

| Item             | Command                  |                            | Description                       | Default                                                              |
|------------------|--------------------------|----------------------------|-----------------------------------|----------------------------------------------------------------------|
|                  | Set commands             | Value commands             |                                   |                                                                      |
|                  | Prefix/Suffix 10.1.3     | ASCII: <u>10.1.4</u>       |                                   | All codes Suffix<br>USB-HID: "Enter"<br>USB-COM:"CR"<br>RS-232C:"CR" |
| Dentisy/Coeffice |                          | Code ID: <u>10.1.5</u>     | Set character to<br>Prefix/Suffix |                                                                      |
| Prelix/Sullix    |                          | Code Length: <u>10.1.6</u> |                                   |                                                                      |
|                  | Code Coordinates: 10.1.7 |                            | RS-2320. CR                       |                                                                      |
|                  | Scan time: <u>10.1.8</u> |                            |                                   |                                                                      |

Example: to set "C39:" as the prefix and "CR" and "LF" as the suffix for Code 39. Command: <Esc>M40CQ3Q96AO41M1J<CR>

#### Note

- The prefix and suffix setting commands clear the current values and configure new ones. The default suffix of CR is also cleared.
- Clearing the default suffix CR is possible by scanning the RZ menu code (Set suffix for all codes) without codes for the suffix or the PR menu code (Clear suffix).
- When the number of configured prefix / suffix characters exceeds the maximum limit (4 digits), the configuration will be ignored.

<sup>\*</sup>Prefix / Suffix can also be set with menu barcode or 2D menu code.

# 10.1.3 Command List: Settings of the Prefix / Suffix

| Code                      | Prefix Command | Suffix Command |
|---------------------------|----------------|----------------|
| All codes Prefix / Suffix | RY             | RZ             |

By default, "CR" is added to the suffixes all code.
\*To clear "CR", send "RZ" command only.

Following are the each code prefix / suffix setting command.

| Code                       | Prefix Command | Suffix Command |
|----------------------------|----------------|----------------|
| UPC-A                      | N1             | N6             |
| UPC-A add-on               | MO             | O0             |
| UPC-E                      | N2             | N7             |
| UPC-E add-on               | M1             | O1             |
| EAN-13                     | N3             | N8             |
| EAN-13 add-on              | M2             | O2             |
| EAN-8                      | N4             | N9             |
| EAN-8 add-on               | M3             | O3             |
| Code 39                    | M4             | O4             |
| Tri-optic                  | MC             | PN             |
| Codabar                    | M5             | O5             |
| Industrial 2 of 5          | M6             | O6             |
| Interleaved 2 of 5         | M7             | 07             |
| S-Code                     | MB             | ОВ             |
| Matrix 2 of 5              | GL             | GM             |
| Chinese Post Matrix 2 of 5 | GL             | Givi           |
| IATA                       | 18             | 19             |
| MSI/Plessey                | N0             | N5             |
| Telepen                    | L8             | L9             |
| UK/Plessey                 | MA             | OA             |
| Code 128                   | M9             | O9             |
| GS1-128                    | [XMX]          | [XOX]          |
| Code 11                    | [BLD           | [BLE           |
| Korean Postal Authority    | *\$            | *%             |

| Code                        | Prefix Command | Suffix Command |
|-----------------------------|----------------|----------------|
| Intelligent Mail Barcode    | [D5I           | [D5J           |
| POSTNET                     | [D6D           | [D6E           |
| PLANET                      | [DG5           | [DG6           |
| Japan Postal                | [D5S           | [D5T           |
| Netherlands Kix Code        | [D5N           | [D5O           |
| UK Postal (Royal Mail)      | [DGA           | [DGB           |
| 4-state Mailmark barcode    | [DGV           | [DGW           |
| Australian Postal           | [D6P           | [D6Q           |
| GS1 DataBar                 | OE             | PQ             |
| GS1 DataBar                 | [D6J           | [D6G           |
| GS1 DataBar Limited         | [D6K           | [D6H           |
| GS1 DataBar Expanded        | [D6L           | [D6I           |
| GS1 Composite code          | RR             | RS             |
| Codablock F                 | [D4S           | [D4T           |
| Data Matrix                 | MD             | PO             |
| Aztec                       | [BF0           | [BF1           |
| Chinese Sensible Code       | [D4N           | [D4O           |
| QR Code                     | MK             | PW             |
| Maxi Code                   | ML             | PX             |
| PDF417                      | OC             | PY             |
| MicroPDF417                 | OD             | PZ             |
| Machine Readable Passports  | [DJJ           | [DJP           |
| Machine Readable Visas-A    | [DJK           | [DJQ           |
| Machine Readable Visas-B    | [DJL           | [DJR           |
| Official Travel Documents 1 | [DJM           | [DJS           |
| Official Travel Documents 2 | [DJN           | [DJT           |
| ISBN                        | [DJO           | [DJU           |

To add to preamble / postamble, use the following command.

| Code                 | Preamble Command | Postamble Command |
|----------------------|------------------|-------------------|
| Preamble / Postamble | MZ               | PS                |

# 10.1.4 ASCII (Prefix / Suffix Values)

| ASCII           | Command | ASCII | Command | ASCII | Command     | ASCII      | Command |
|-----------------|---------|-------|---------|-------|-------------|------------|---------|
| <space></space> | 5A      | Α     | 0A      | а     | \$A         | ^@ (NULL)  | 9G      |
| !               | 5B      | В     | 0B      | b     | \$B         | ^A (SOH)   | 1A      |
| "               | 5C      | С     | 0C      | С     | \$C         | ^B (STX)   | 1B      |
| #               | 5D      | D     | 0D      | d     | \$D         | ^C (ETX)   | 1C      |
| \$              | 5E      | E     | 0E      | е     | \$E         | ^D (EOT)   | 1D      |
| %               | 5F      | F     | 0F      | f     | \$F         | ^E (ENQ)   | 1E      |
| &               | 5G      | G     | 0G      | g     | \$G         | ^F (ACK)   | 1F      |
| 1               | 5H      | Н     | 0H      | h     | \$H         | ^G (BEL)   | 1G      |
| (               | 51      | ı     | OI      | i     | <b>\$</b> I | ^H (BS)    | 1H      |
| )               | 5J      | J     | 0J      | j     | \$J         | 시 (HT)     | 11      |
| *               | 5K      | K     | 0K      | k     | \$K         | ^J (LF)    | 1J      |
| +               | 5L      | L     | 0L      | I     | \$L         | ^K (VT)    | 1K      |
| ,               | 5M      | М     | OM      | m     | \$M         | ^L (FF)    | 1L      |
| -               | 5N      | Ν     | 0N      | n     | \$N         | ^M (CR)    | 1M      |
|                 | 50      | 0     | 00      | 0     | \$O         | ^N (SO)    | 1N      |
| /               | 5P      | Р     | 0P      | р     | \$P         | ^O (SI)    | 10      |
| :               | 6A      | Q     | 0Q      | q     | \$Q         | ^P (DLE)   | 1P      |
| ;               | 6B      | R     | 0R      | r     | \$R         | ^Q (DC1)   | 1Q      |
| <               | 6C      | S     | 0S      | S     | \$S         | ^R (DC2)   | 1R      |
| =               | 6D      | Т     | 0T      | t     | \$T         | ^S (DC3)   | 1S      |
| >               | 6E      | U     | 0U      | u     | \$U         | ^T (DC4)   | 1T      |
| ?               | 6F      | V     | 0V      | V     | \$V         | ^U (NAK)   | 1U      |
| @               | 6G      | W     | OW      | w     | \$W         | ^V (SYN)   | 1V      |
| [               | 7A      | Х     | 0X      | х     | \$X         | ^W (ETB)   | 1W      |
| \               | 7B      | Υ     | 0Y      | у     | \$Y         | ^X (CAN)   | 1X      |
| ]               | 7C      | Z     | 0Z      | Z     | \$Z         | ^Y (EM)    | 1Y      |
| ٨               | 7D      | 0     | Q0      |       |             | ^Z (SUB)   | 1Z      |
|                 | 7E      | 1     | Q1      |       |             | ^[ (ESC)   | 9A      |
| `               | 7F      | 2     | Q2      |       |             | ^\ (FS)    | 9B      |
| {               | 9T      | 3     | Q3      |       |             | ^] (GS)    | 9C      |
|                 | 9U      | 4     | Q4      |       |             | ^^ (RS)    | 9D      |
| }               | 9V      | 5     | Q5      |       |             | ^_ (US)    | 9E      |
| ~               | 9W      | 6     | Q6      |       |             | DEL        | ٥٦      |
|                 |         | 7     | Q7      |       |             | (ASCII127) | 9F      |
|                 |         | 8     | Q8      |       |             |            |         |
|                 |         | 9     | Q9      |       |             |            |         |

### 10.1.5 Code ID

Code ID can be added by sending following command continue to the prefix / suffix setting command.

| Item                | Command | Description                                 | Default |
|---------------------|---------|---------------------------------------------|---------|
| Code identification | \$2     | Code identification using OPTICON ID        |         |
| Code identification | \$1     | Code identification using AIM ID/ ISO 15424 |         |

There are two ways of adding Code ID as follows.

- OPTICON Code ID: (Refer appendix 11.1.1)
- AIM/ISO Code ID: (Refer appendix <u>11.1.2</u>)

The code identifier is transmitted in ISO 15424 format. lcm

- ] is ASCII value, decimal 93
- c is code character
- · m is modifier character

Example) Add "<OPTICON Code ID>" to the all codes prefix.

Configuring with Command:

<Esc>RY\$2<CR>

# 10.1.6 Code Length

For 1D codes the code length is transmitted as 2 digits, excluding prefix and suffix characters. For 2D codes the code length is transmitted as 6 digits. It is also possible to send the length as 6 digits for both 1D and 2D codes. These direct input characters count as 1 entry of the 4 permissible entries for a prefix and suffix.

Code length can be added by sending following command continue to the prefix / suffix setting command.

| Item              | Command | Description                    | Default |
|-------------------|---------|--------------------------------|---------|
| Cada langth value | \$3     | Code length (1D/2D: 2/6 digit) |         |
| Code length value | \$6     | Code length (1D/2D: 6/6 digit) |         |

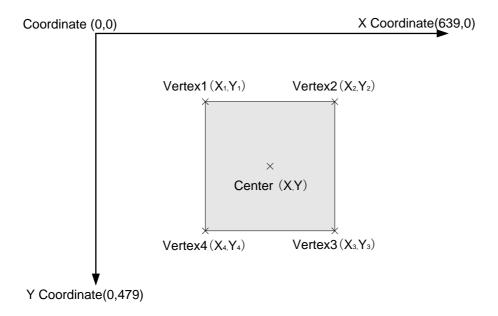
Example: Set the prefix for all codes to <Code length (1D/2D: 2/6 digit)>:

Configuring with Command:

<ESC>RY\$3<CR>

### 10.1.7 Code Coordinates

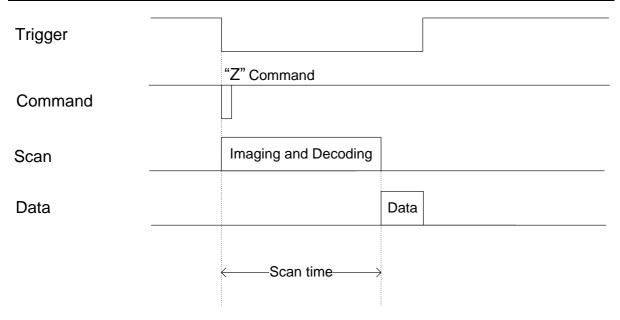
The code coordinate is transmitted as the pixel coordinate of the image sensor It is possible to output the vertexes and/or the center of the code within the image.


| Item             | Command | Description            | Default |
|------------------|---------|------------------------|---------|
| Code Coordinates | [DDX    | Code vertex coordinate |         |
| Code Coordinates | [DDY    | Code center coordinate |         |

# Vertexes output format: \( \times\_1/\text{Y}\_1:\text{X}\_2/\text{Y}\_2:\text{X}\_3/\text{Y}\_3:\text{X}\_4/\text{Y}\_4 \)

- Center output format X/Y
- X Y format X: 1 to 3 digits Y: 1 to 3 digits

The range of coordinate is described below.


X: 0 to 639 Y: 0 to 479



# 10.1.8 **Scan Time**

The scan time is the time from trigger until data output start.

| Item            | Command | Description | Default |
|-----------------|---------|-------------|---------|
| Scan time value | [EDG    | Scan time   |         |



### 10.2 Case Conversion

The decoded data may be converted to either all lower case or all upper case or the case may be exchanged. These options may be used if the host requires upper or lower case characters only.

• Upper case / Lower case conversion example

| Description           | AbCd | Default |
|-----------------------|------|---------|
| No case conversion    | AbCd | ✓       |
| Convert to upper case | ABCD |         |
| Convert to lower case | abcd |         |
| Exchange case         | aBcD |         |

Upper case and Lower case can be set from following commands.

| Items           | Command Description |                       | Default |
|-----------------|---------------------|-----------------------|---------|
| Case Conversion | YZ                  | No case conversion    | ✓       |
|                 | YW                  | Convert to upper case |         |
|                 | YX                  | Convert to lower case |         |
|                 | YY                  | Exchange case         |         |

# 11 Appendix

This chapter lists the reference data.

- 11.1 Code ID Table
- 11.2 NLV-5201 Specification Overview
- 11.3 Sample Codes

## 11.1 Code ID Table

Following are the Code ID to be added to the prefix / suffix.

### 11.1.1 Opticon Code ID prefix / suffix value

| Code                   | Code ID | Code                        | Code ID |  |
|------------------------|---------|-----------------------------|---------|--|
| UPC-A                  | С       | Code 11                     | b       |  |
| UPC-A +2               | F       | Code 128                    | Т       |  |
| UPC-A +5               | G       | GS1-128                     | '       |  |
| UPC-E                  | D       | GS1 DataBar                 | у       |  |
| UPC-E +2               | Н       | CC-A                        | m       |  |
| UPC-E +5               | I       | СС-В                        | n       |  |
| EAN-13                 | В       | CC-C                        | I       |  |
| EAN-13 +2              | L       | Korean Postal Authority     | С       |  |
| EAN-13 +5              | М       | Intelligent mail            | 0       |  |
| EAN-8                  | А       | Postal-TNT, KIX             | 1       |  |
| EAN-8 +2               | J       | Japan postal                | 2       |  |
| EAN-8 +5               | K       | Postnet                     | 3       |  |
| Code 39                | V       | Australia postal code       | 4       |  |
| Code 39 Full ASCII     | W       | US Planet                   | 6       |  |
| Italian Pharmaceutical | Υ       | UK Postal (Royal mail)      | 7       |  |
| Codabar                | R       | 4-state Mailmark barcode    | 8       |  |
| Codabar ABC            | S       | Codablock F                 | Е       |  |
| Codabar CX             | f       | Data Matrix                 | t       |  |
| Industrial 2 of 5      | 0       | Aztec                       |         |  |
| Interleaved 2 of 5     | N       | Aztec Runes                 | 0       |  |
| S-Code                 | g       | Chinese Sensible Code       | е       |  |
| Matrix 2 of 5          | Q       | QR Code                     | u       |  |
| Chinese Post           | W       | Micro QR Code               | j       |  |
| Code 93                | U       | Maxi Code                   | V       |  |
| IATA                   | Р       | PDF417                      | r       |  |
| MSI/Plessey            | Z       | MicroPDF417                 | S       |  |
| Telepen                | d       | ICAO Travel Documents (OCR) | 9       |  |
| UK/Plessey             | а       | ISBN and Other OCR Font B   | Z       |  |

### 11.1.2 Code Option AIM / ISO15424 Code ID prefix / Suffix value

| AIM/ISO15424 Code ID       |         |                          |         |  |  |
|----------------------------|---------|--------------------------|---------|--|--|
| Symbology                  | Code ID | Symbology                | Code ID |  |  |
| UPC-A                      | ]E0     | Telepen                  | ]B*     |  |  |
| UPC-A +2                   | ]E3     | UK/Plessey               | ]P0     |  |  |
| UPC-A +5                   | ]E3     | Code 128                 | ]C0     |  |  |
| UPC-E                      | ]E0     | GS1-128                  | ]C1     |  |  |
| UPC-E +2                   | ]E3     | Code 93                  | ]G0     |  |  |
| UPC-E +5                   | ]E3     | Code 11                  | ]H*     |  |  |
| EAN-13                     | ]E0     | Code 11                  | ]X0     |  |  |
| EAN-13 +2                  | ]E3     | Korean Postal Authority  | ]X0     |  |  |
| EAN-13 +5                  | ]E3     | Intelligent Mail Barcode | ]X0     |  |  |
| EAN-8                      | ]E4     | POSTNET                  | ]X0     |  |  |
| EAN-8 +2                   | ]E7     | GS1 DataBar              | ]e0     |  |  |
| EAN-8 +5                   | ]E7     | CC-A                     | ]e1     |  |  |
| Code 39                    | ]A*     | CC-B                     | ]e1     |  |  |
| Code 39 Full ASCII         | ]A*     | CC-C                     | ]e1     |  |  |
| Tri-Optic                  | ]X0     | GS1 DataBar with CC-A    | ]e0     |  |  |
| Code 39 lt. Pharmaceutical | ]X0     | GS1 DataBar with CC-B    | ]e0     |  |  |
| Codabar                    | ]F*     | GS1 DataBar with CC-C    | ]e0     |  |  |
| Codabar ABC                | ]F*     | Codablock F              | ]O*     |  |  |
| Codabar CX                 | ]X0     | DataMatrix               | ]d*     |  |  |
| Industrial 2 of 5          | ]S0     | A-to-                    | ]z*     |  |  |
| Interleaved 2 of 5         | ][*     | Aztec                    | ]X0     |  |  |
| S-Code                     | ]X0     | QR Code                  | ]Q*     |  |  |
| Matrix 2 of 5              | ]X0     | Micro QR Code            | ]Q*     |  |  |
| Chinese Post               | ]X0     | Maxi Code                | ]U*     |  |  |
| IATA                       | ]R*     | PDF417                   | ]LO     |  |  |
| MSI/Plessey                | ]M*     | MicroPDF417              | ]LO     |  |  |
| WSI/Plessey                | ]X0     | OCR                      | ]X0     |  |  |

<sup>&</sup>quot;\*" are described differently depend on code type, please refer below.

| Code option                                                       | ]AIM-ID           | Code option                                                                                               | ]AIM-ID |
|-------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|---------|
| Code 39                                                           | option AIM/ISO1   | 15424 Code ID : A*                                                                                        |         |
| Normal Code 39 (D5)<br>Not check CD (C1)<br>Transmit CD (D9)      | ]A0               | Full ASCII Code 39 (D4) or<br>Full ASCII Code 39 if pos. (+K)<br>Not check CD (C1)<br>Transmit CD (D9)    | ]A4     |
| Normal Code 39 (D5)<br>Check CD (C0)<br>Transmit CD (D9)          | ]A1               | Full ASCII Code 39(D4) or<br>Full ASCII Code 39 if pos. (+K)<br>Check CD (C0)<br>Transmit CD (D9)         | ]A5     |
| Normal Code 39 (D5)<br>Not check CD (C1)<br>Not transmit CD (D8)  | ]A2               | Full ASCII Code 39(D4) or<br>Full ASCII Code 39 if pos. (+K)<br>Not check CD (C1)<br>Not transmit CD (D8) | ]A6     |
| Normal Code 39 (D5)<br>Check CD (C0)<br>Not transmit CD (D8)      | ]A3               | Full ASCII Code 39(D4) or<br>Full ASCII Code 39 if pos. (+K)<br>Check CD (C0)<br>Not transmit CD (D8)     | ]A7     |
| Codabai                                                           | option AIM/ISO    | 15424 Code ID : F*                                                                                        |         |
| Codabar normal mode (HA)<br>Not check CD (H7)<br>Transmit CD (H8) | ]F0               | Codabar normal mode(HA) Not check CD (H7) Not transmit CD (H9)                                            | ]F4     |
| Codabar ABC (H4) or (H3)<br>Not check CD (H7)<br>Transmit CD (H8) | ]F1               | Codabar ABC (H4) or (H3)<br>Not check CD (H7)<br>Not transmit CD (H9)                                     | ]F5     |
| Codabar normal mode (HA)<br>Check CD (H6)<br>Transmit CD (H8)     | ]F2               | Codabar normal mode (HA)<br>Check CD (H6)<br>Not transmit CD (H9)                                         | ]F6     |
| Codabar ABC (H4) or (H3)<br>Check CD (H6)<br>Transmit CD (H8)     | ]F3               | Codabar ABC (H4) or (H3)<br>Check CD (H6)<br>Not transmit CD (H9)                                         | ]F7     |
| Interleaved 2                                                     | 2 of 5 option AIM | /ISO15424 Code ID : I*                                                                                    |         |
| Not check CD (G0)<br>Transmit CD (E0)                             | ]10               | Not check CD (G0)<br>Not Transmit CD (E1)                                                                 | ]12     |
| Check CD (G1)<br>Transmit CD (E0)                                 | ]11               | Check CD (G1) Not Transmit CD (E1)                                                                        | ]13     |

| Code option                                     | ]AIM-ID   | Code option                          | ]AIM-ID |  |  |
|-------------------------------------------------|-----------|--------------------------------------|---------|--|--|
| IATA option                                     | a AIM/ISO | 15424 Code ID : R*                   |         |  |  |
| Not check CD (4H)                               | 100       | Not check CD (4H)                    | 100     |  |  |
| Transmit CD (4L)                                | ]R0       | Not transmit CD (4M)                 | ]R2     |  |  |
| Check FC and SN only (4I) or                    |           | Check FC and SN only (4I) or         |         |  |  |
| Check CPN,FC and SN (4J) or                     | ]R1       | Check CPN,FC and SN (4J) or          | ]R3     |  |  |
| Check CPN,AC,FC and SN (4K)                     | JIXI      | Check CPN, AC, FC and SN (4K)        | JIVO    |  |  |
| Transmit CD (4L)                                |           | Not transmit CD (4M)                 |         |  |  |
| MSI/Plessey option AIM/ISO15424 Code ID : M*/X0 |           |                                      |         |  |  |
| Check 1CD = MOD 10 (4B):                        |           | Check 2CD's = MOD 10/MOD 11 (4D):    |         |  |  |
| (4B) + Transmit CD1 (4E) or                     | ]M0       | (4D) + Transmit CD1 (4E) or          | 1)/0    |  |  |
| (4B) + Not transmit CD (4G) or                  | ]M1       | (4D) + Not transmit CD (4G) or       | ]X0     |  |  |
| (4B) + Transmit CD1 and CD2 (4F)                | ]X0       | (4D) + Transmit CD1 and CD2 (4F)     |         |  |  |
| Check 2CD's = MOD 10/MOD 10 (4C):               |           | Check 2CD's = MOD 11/MOD 10 (4R):    |         |  |  |
| (4C) + Transmit CD1 (4E) or                     | 170       | (4D) + Transmit CD1 (4E) or          | 170     |  |  |
| (4C) + Not transmit CD (4G) or                  | ]X0       | (4D) + Not transmit CD (4G) or       | ]X0     |  |  |
| (4C) + Transmit CD1 and CD2 (4F)                |           | (4D) + Transmit CD1 and CD2 (4F)     |         |  |  |
| Telepen option                                  | on AIM/IS | O15424 Code ID : B*                  |         |  |  |
| Telepen (numeric or ASCII only):                |           | Telepen (numeric followed by ASCII): |         |  |  |
| ASCII mode (D3)                                 | ]B0       | ASCII mode (D3)                      | ]B0     |  |  |
| Numeric mode (D2)                               | ]B1       | Numeric mode (D2)                    | ]B2     |  |  |
| Telepen (ASCII followed by numeric)             |           |                                      |         |  |  |
| (not supported):                                |           |                                      |         |  |  |
| ASCII mode (D3)                                 | ]B0       |                                      |         |  |  |
| Numeric mode (D2)                               | ]B2       |                                      |         |  |  |
| Code 11 option                                  | AIM/ISO   | 15424 Code ID : H*/X0                |         |  |  |
| Check 1CDs (BLG)                                |           | Check 1CDs (BLG)                     |         |  |  |
| or Check auto 1 or 2CDs (BLI)                   |           | or Check 2CDs (BLH)                  |         |  |  |
| (length > 12)                                   | ]H0       | or Check auto 1 or 2CDs (BLI)        | ]H3     |  |  |
| Transmit CD <sub>(S)</sub> (BLK)                |           | (length > 12)                        |         |  |  |
|                                                 |           | Not Transmit CD <sub>(S)</sub> (BLJ) |         |  |  |
| Check 2CDs (BLH) or                             |           | Not check CD (BLF)                   |         |  |  |
| Check auto 1 or 2CDs (BLI)                      | ]H1       | Not transmit CD (BLJ)                | ]X0     |  |  |
| (length > 12)                                   | _         |                                      |         |  |  |
| Transmit CD <sub>(S)</sub> (BLK)                |           |                                      |         |  |  |
| Codablock F option AIM/ISO15424 Code ID : O*    |           |                                      |         |  |  |
| FNC1 not used                                   | ]04       | FNC1 in 1st position                 | ]05     |  |  |

| Code option                                 | ]AIM-ID    | Code option                                                    | ]AIM-ID |
|---------------------------------------------|------------|----------------------------------------------------------------|---------|
| DataMatrix opti                             | ions AIM/I | SO15424 Code ID: d*                                            |         |
| ECC200                                      | ]d1        | ECC200, supporting ECI protocol                                | ]d4     |
| ECCOOL ENGLINE data at Eth monition         | 140        | ECC200,FNC1 in 1st or 5th position                             | 145     |
| ECC200, FNC1 IN 1st or 5th position         | ]d2        | and supporting ECI protocol                                    | ]d5     |
| ECC200, FNC1 IN 2nd or 6th position         | ]d3        | ECC200,FNC1 in 2nd or 6th position and supporting ECI protocol | ]d6     |
| Aztec option                                | s AIM/ISC  | 015424 Code ID: z*                                             |         |
| No structure/other                          | ]z0        | Structured append header included,                             |         |
| FNC1 preceding 1st message character        | ]z1        | FNC1 following an initial letter or pair of digits             | ]z8     |
| FNC1 following an initial letter            | ]z2        | Structured append header included                              |         |
| or pair of digits                           |            | and                                                            | ]z9     |
| ECI protocol implemented                    | ]z3        | ECI protocol implemented                                       |         |
| FNC1 preceding 1st message character        | ]z4        | Structured append header included,                             |         |
| and ECI protocol implemented                |            | FNC1 preceding 1st message character,                          | ]zA     |
| FNC1 following an initial letter or pair of | ]z5        | ECI protocol implemented                                       |         |
| digits, ECI protocol implemented            |            | Structured append header included,                             |         |
| Structured append header included           | ]z6        | FNC1 following an initial letter or pair                       | ]zB     |
| Structured append header included and       | ]_0        | of digits, ECI protocol implemented                            | ]       |
| FNC1 preceding 1st message character        | ]z7        | Aztec runes                                                    | ]zC     |
| QR Code option                              | on AIM/IS  | O15424 Code ID: Q*                                             | _       |
| Model 1                                     | ]Q0        | Model 2, ECI protocol implemented                              |         |
| Model 2, ECI protocol not implemented       | ]Q1        | FNC1 in first position                                         | ]Q4     |
| Model 2, ECI protocol implemented           | ]Q2        | Model 2, ECI protocol not                                      |         |
|                                             | -          | implemented                                                    | ]Q5     |
| Model 2, ECI protocol not implemented       | ]Q3        | FNC1 in second position                                        |         |
| FNC1 in first position                      |            | Model 2, ECI protocol implemented                              | ]Q6     |
|                                             |            | FNC1 in second position                                        |         |
| Maxi Code opt                               | ion AIM/IS | SO15424 Code ID: U*                                            |         |
| Symbol in mode 4 of 5                       | ]U0        | Symbol in mode 4 of 5, ECI protocol implemented                | ]U2     |
| Symbol in mode 2 of 3                       | ]U1        | Symbol in mode 2 of 3,<br>ECI protocol implemented             | ]U3     |
|                                             |            | Loi protocoi impiementeu                                       |         |

## 11.2 NLV-5201 Specification Overview

NLV-5201 specifications overview is as follows.

### 11.2.1 Common Specification Overview

|                          | Item                  | 1      | Specification                                                                                                                                                                                                 | Note                                  |
|--------------------------|-----------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Inter                    | RS-232C               |        | 300 to 115,200 bps                                                                                                                                                                                            | Default: 9600 bps                     |
| Interface                | USB                   |        | Full Speed 12 Mbps (HID/COM)                                                                                                                                                                                  |                                       |
| Indicator                | Status LED            |        | Upper panel 3 colors LED (Red, Orange, Green)                                                                                                                                                                 |                                       |
| ator                     | Buzzer                |        | Loudness / tone adjustable                                                                                                                                                                                    |                                       |
|                          | Scanning metho        | od     | Monochrome CMOS area sensor                                                                                                                                                                                   | Frame rate: 100 fps                   |
|                          | Focus distance        |        | 113 mm                                                                                                                                                                                                        |                                       |
| Optical Section          | Scanning light source |        | 1 warm white LED                                                                                                                                                                                              |                                       |
| al Se                    | Aiming light source   |        | Single line green LED                                                                                                                                                                                         |                                       |
| ctior                    | Effective pixels      |        | 0.30 million pixels (H: 640 x V: 480)                                                                                                                                                                         |                                       |
|                          | View angle            |        | Horizontal : about 38.0°<br>Vertical : about 28.9°<br>Diagonal : about 46.4°                                                                                                                                  |                                       |
| Supported 1D Symbologies | Symbologies           | 1D     | UPC-A, UPC-E, UPC-A Add-on, UPC-E Add-on, EAN-13, EAN-8, EAN-13 Add-on/EAN-8 Add-on, JAN-13, JAN-8, Code 39, Codabar, Industrial 2 of 5, Interleaved 2 of 5, Code 93, Code 128, GS1-128, MSI/Plessey, Code 11 |                                       |
| ed 1D<br>ogies           |                       | Postal | Japan Postal, Intelligent Mail Barcode,<br>POSTNET, PLANET, Netherlands KIX Code, UK<br>Postal, Australian Postal, Korean Postal<br>Authority code                                                            |                                       |
| GS1/Composite            | Symbologies           |        | GS1 DataBar, GS1 DataBar Limited,<br>GS1 DataBar Expanded<br>Composite GS1 DataBar,<br>Composite GS1-128,<br>Composite EAN, Composite UPC                                                                     | GS1 DataBar:<br>formerly called "RSS" |

|                             | Item              |                         | Specifica                                       | ation                                                                                                                              | Note                      |  |
|-----------------------------|-------------------|-------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| Supported 2D<br>Symbologies | Symbologies       |                         | Micro QR Code, DataMatri                        | PDF417, MicroPDF417, Codablock F, QR Code ,<br>Micro QR Code, DataMatrix (ECC 200),<br>MaxiCode, Aztec Code, Chinese Sensible Code |                           |  |
| Common                      | Scan angle        |                         | Pitch ±65° Skew ±65° Tilt 360°                  |                                                                                                                                    | Code 39 0.5 mm            |  |
| n                           | Minimum PCS       | 3                       | 0.3 or more                                     |                                                                                                                                    | UPC/EAN 0.33 mm           |  |
| OCR                         | OCR font          |                         | OCR-A<br>OCR-B                                  |                                                                                                                                    |                           |  |
|                             | Image data format |                         | Windows Bitmap, JPEG                            |                                                                                                                                    |                           |  |
|                             | Shades of gray    |                         | 1024, 256, 16, 2                                |                                                                                                                                    |                           |  |
|                             | Range of outp     | ut image                | Select top/bottom (column) and left/right (row) |                                                                                                                                    | -<br>-<br>-               |  |
| lmager                      | Resolution of     | output image            | Full,1/2, 1/4                                   |                                                                                                                                    |                           |  |
| er                          | Interface of ou   | ıtput image             | RS-232C, USB-COM                                |                                                                                                                                    | ]                         |  |
|                             |                   |                         | USB-COM (full speed)                            | About 3 sec                                                                                                                        |                           |  |
|                             | Baud rate         |                         | RS-232C<br>(baud rate: 115.2 kbps)              | About 40 sec                                                                                                                       | Resolution: Full          |  |
|                             | Range of oper     | rating voltage          | 4.5 – 5.5 V                                     |                                                                                                                                    | RS-232C/USB common        |  |
| 70                          |                   | Operating<br>Maximum    | 450mA                                           |                                                                                                                                    |                           |  |
| Power                       | Current           | Reading                 | 265mA (Typ.)                                    |                                                                                                                                    | RS-232C / USB common      |  |
| er                          | consumption       | Auto trigger<br>Standby | 190mA (Typ.)                                    |                                                                                                                                    | Ambient temperature: 25°C |  |
|                             |                   | Standby                 | 40mA (Typ.)                                     |                                                                                                                                    |                           |  |

|                      | Item                   |             | Specification                                                                                                           | Note                                                     |
|----------------------|------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                      | Tomporeture            | Operating   | 0 to 50 °C                                                                                                              |                                                          |
|                      | Temperature            | Storage     | -20 to 60 °C                                                                                                            |                                                          |
| Environmental        | I I commindity o       | Operating   | 20 to 85% (no condensing, no frost)                                                                                     |                                                          |
|                      | Humidity               | Storage     | 20 to 90% (no condensing, no frost)                                                                                     |                                                          |
| nmer                 |                        | Fluorescent | 10,000 lx or less                                                                                                       | UPC/EAN 0.33 mm<br>Optical axis angle 75°                |
|                      | Ambient light immunity | Sunlight    | 100,000 lx or less                                                                                                      | Distance<br>SR, HD: 125 mm<br>UD: 78mm                   |
| Specifications       | Vibration              |             | 10 Hz to 100 Hz, acceleration of 19.6 m/s <sup>2</sup> , 60 minutes per cycle, repeat once in each X, Y and Z-direction |                                                          |
| ns                   | Drop                   |             | Drop 3 times, at each 5 faces (right, left, front, back and top), from a height of 75 cm onto a concrete surface.       | Excluding the part where the interface cable is attached |
|                      | Dust and drip proof    |             | IP65 equivalent                                                                                                         |                                                          |
| Physical<br>Features | Dimensions (mm)        |             | Approx. 41.1 (W) × 33.0 (H) × 24.0 (D)                                                                                  | Except protruding portion                                |
|                      | Weight                 |             | Approx. 125 g                                                                                                           | Excluding the cable                                      |
| S E                  | Housing mate           | rial        | Zinc alloy diecasting                                                                                                   |                                                          |

#### 11.2.2 Technical Specifications

**Standard Model Reading Characteristics** 

|                | Item Specification |                     | Notes                  |                 |
|----------------|--------------------|---------------------|------------------------|-----------------|
|                |                    | Code 39             | : 0.1 mm               |                 |
|                |                    | GS1 DataBar         | : 0.169 mm             |                 |
|                | Minimum            | Composite Code      | : 0.169 mm             |                 |
|                | resolution         | PDF417              | : 0.169 mm             |                 |
| Star           |                    | QR Code             | : 0.169 mm             |                 |
| nda            |                    | Data Matrix         | : 0.169 mm             | OPTOELECTRONICS |
| Standard model | Curvature          | Radius ≥ 20 mm (UPC | :12)                   | test chart      |
| ode            | Dorondo            | Possible to read:   |                        |                 |
|                | Barcode<br>width   | Width 100 mm Code 3 | 9 Resolution 0.2 mm    |                 |
|                | width              | (DOF: 168 mm)       |                        |                 |
|                | Motion             | Possible to read:   |                        |                 |
|                | tolerance          | UPC 100% moving at  | 2.54 m/s (DOC: 128 mm) |                 |

#### Standard Model Reading Depth of Field

 $(T_A = 25^{\circ}C)$ 

|                       |             |              |            |                       |      | (1A = 25 C)        |  |
|-----------------------|-------------|--------------|------------|-----------------------|------|--------------------|--|
| Resolution            | Code        | PCS (MRD)    | Guaranteed | Guaranteed Value (mm) |      | Typical Value (mm) |  |
| mm (mil)              | Code        | PC3 (MRD)    | Near       | Far                   | Near | Far                |  |
| 0.127 mm<br>(5 mil)   | Code 39     | 0.9<br>(0.8) | 64         | 110                   | 53   | 126                |  |
| 0.254 mm<br>(10 mil)  | Code 39     | 0.9<br>(0.8) | 62         | 209                   | 52   | 237                |  |
| 0.508 mm<br>(20 mil)  | Code 39     | 0.9<br>(0.8) | 84         | 371                   | 69   | 433                |  |
| 0.2 mm<br>(7.9 mil)   | Code 128    | 0.9<br>(0.8) | 77         | 165                   | 62   | 191                |  |
| 0.33 mm<br>(13 mil)   | UPC/EAN     | 0.9<br>(0.8) | 62         | 248                   | 50   | 291                |  |
| 0.169 mm<br>(6.7 mil) | PDF417      | 0.9<br>(0.8) | 57         | 129                   | 49   | 146                |  |
| 0.254 mm<br>(10 mil)  | PDF417      | 0.9<br>(0.8) | 53         | 183                   | 42   | 211                |  |
| 0.169 mm<br>(6.7 mil) | QR Code     | 0.9<br>(0.8) | 73         | 97                    | 60   | 111                |  |
| 0.381 mm<br>(15 mil)  | QR Code     | 0.9<br>(0.8) | 27         | 214                   | 22   | 250                |  |
| 0.169 mm<br>(6.7 mil) | Data Matrix | 0.9<br>(0.8) | 75         | 101                   | 62   | 116                |  |
| 0.254 mm<br>(10 mil)  | Data Matrix | 0.9<br>(0.8) | 55         | 149                   | 43   | 173                |  |

<sup>\*</sup> The depth of field is a determined while using the OPTOELECTRONICS test chart PCS 0.9, without specular reflection and at room temperature and room humidity.

<sup>\*</sup> Refer to 2.5.1 Standard Model (SR) Depth of Field for drawing.

High Resolution Model (HD) Reading Characteristics

| Item                  |                  | Specification                             | Notes           |
|-----------------------|------------------|-------------------------------------------|-----------------|
| High resolution model |                  | Code 39 : 0.076 mm                        |                 |
|                       |                  | GS1 DataBar : 0.127 mm                    |                 |
|                       | Minimum          | Composite Code : 0.127 mm                 |                 |
|                       | resolution       | PDF417 : 0.127 mm                         |                 |
|                       |                  | QR Code : 0.127 mm                        |                 |
|                       |                  | Data Matrix : 0.127 mm                    | OPTOELECTRONICS |
|                       | Curvature        | Radius ≥ 20 mm (UPC12)                    | test chart      |
|                       | Dorondo          | Possible to read:                         |                 |
|                       | Barcode<br>width | Width 80 mm Code 39 Resolution 0.2 mm     |                 |
|                       | width            | (DOF: 138 mm)                             |                 |
|                       | Motion           | Possible to read:                         |                 |
|                       | tolerance        | UPC 100% moving at 2.54 m/s (DOC: 118 mm) |                 |

#### High Resolution Model (HD) Reading Depth of Field

 $(T_A = 25^{\circ}C)$ 

| Resolution            | Code        | PCS (MRD)    | Guaranteed Value (mm) |     | Typical Value (mm) |     |
|-----------------------|-------------|--------------|-----------------------|-----|--------------------|-----|
| mm (mil)              |             |              | Near                  | Far | Near               | Far |
| 0.076 mm<br>(3 mil)   | Code 39     | 0.9<br>(0.8) | 53                    | 63  | 45                 | 72  |
| 0.127 mm<br>(5 mil)   | Code 39     | 0.9<br>(0.8) | 43                    | 102 | 35                 | 119 |
| 0.254 mm<br>(10 mil)  | Code 39     | 0.9<br>(0.8) | 62                    | 155 | 55                 | 179 |
| 0.2 mm<br>(7.9 mil)   | Code 128    | 0.9<br>(0.8) | 77                    | 138 | 68                 | 159 |
| 0.33 mm<br>(13 mil)   | UPC/EAN     | 0.9<br>(0.8) | 62                    | 171 | 48                 | 200 |
| 0.127 mm<br>(5.0 mil) | PDF417      | 0.9<br>(0.8) | 46                    | 95  | 39                 | 109 |
| 0.254 mm<br>(10 mil)  | PDF417      | 0.9<br>(0.8) | 51                    | 135 | 46                 | 154 |
| 0.127 mm<br>(5.0 mil) | QR Code     | 0.9<br>(0.8) | 49                    | 79  | 43                 | 91  |
| 0.381 mm<br>(15 mil)  | QR Code     | 0.9<br>(0.8) | 31                    | 153 | 24                 | 180 |
| 0.127 mm<br>(5.0 mil) | Data Matrix | 0.9<br>(0.8) | 55                    | 63  | 48                 | 78  |
| 0.254 mm<br>(10 mil)  | Data Matrix | 0.9<br>(0.8) | 35                    | 120 | 28                 | 139 |

<sup>\*</sup> The depth of field is a determined while using the OPTOELECTRONICS test chart PCS 0.9, without specular reflection and at room temperature and room humidity.

\* Refer to 2.5.2 High Resolution Model (HD) Depth of Field for drawing.

Ultra High Resolution model (UD) Reading Characteristics

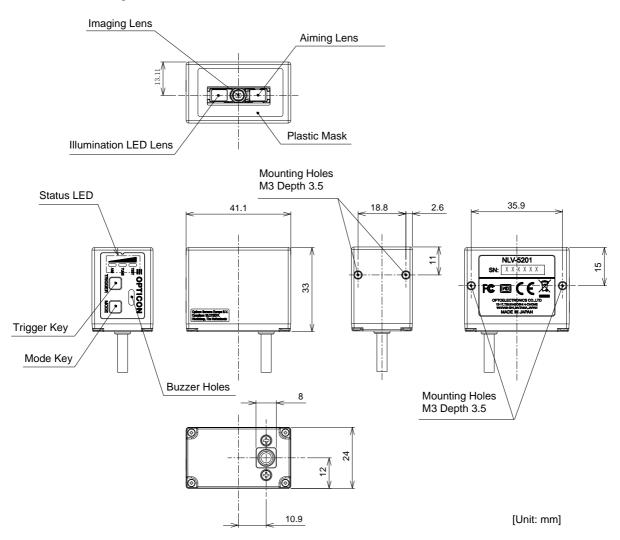
| Item                        |                    | Specification                                                              | Notes                      |
|-----------------------------|--------------------|----------------------------------------------------------------------------|----------------------------|
| Ultra High resolution model | Minimum resolution | Code 39 : 0.051 mm  QR Code : 0.083 mm  Data Matrix : 0.083 mm             |                            |
|                             | Curvature          | Radius ≥ 22 mm (UPC12)                                                     | OPTOELECTRONICS test chart |
|                             | Barcode<br>width   | Possible to read:<br>Width 40 mm Code 39 Resolution 0.2 mm<br>(DOF: 73 mm) |                            |

#### Ultra High Resolution model (UD) Reading Depth of Field

 $(T_A = 25^{\circ}C)$ 

| Resolution            | Code        | PCS<br>(MRD) | Guaranteed Value (mm) |     | Typical Value (mm) |     |
|-----------------------|-------------|--------------|-----------------------|-----|--------------------|-----|
| mm (mil)              |             |              | Near                  | Far | Near               | Far |
| 0.076 mm<br>(3 mil)   | Code 39     | 0.9<br>(0.8) | 35                    | 56  | 28                 | 65  |
| 0.127 mm<br>(5 mil)   | Code 39     | 0.9<br>(0.8) | 35                    | 68  | 23                 | 82  |
| 0.254 mm<br>(10 mil)  | Code 39     | 0.9<br>(0.8) | 64                    | 93  | 53                 | 108 |
| 0.33 mm<br>(13 mil)   | UPC/EAN     | 0.9<br>(0.8) | 66                    | 102 | 50                 | 120 |
| 0.084 mm<br>(3.3 mil) | QR Code     | 0.9<br>(0.8) | 42                    | 45  | 33                 | 55  |
| 0.381 mm<br>(15 mil)  | QR Code     | 0.9<br>(0.8) | 29                    | 92  | 22                 | 109 |
| 0.084 mm<br>(3.3 mil) | Data Matrix | 0.9<br>(0.8) | 43                    | 48  | 35                 | 55  |
| 0.254 mm<br>(10 mil)  | Data Matrix | 0.9<br>(0.8) | 33                    | 72  | 22                 | 86  |

<sup>\*</sup> The depth of field is a determined while using the OPTOELECTRONICS test chart PCS 0.9, without specular reflection and at room temperature and room humidity.
\* Refer to 2.5.3 Ultra High Resolution model (UD) Depth of Field for drawing.


#### 11.2.3 Detailed View

Dimensions Weight

Approx.41.1 mm (W)  $\times$  33.0 mm (H)  $\times$  24.0 mm (D) (except protruding portion)

Approx.125 g (excluding cable)

Mechanical Drawing



#### 11.2.4 Product Label

#### **Product Label**

Example of serial label attached to the scanner is shown below.



The details of the label are as follows;



<sup>\* 6</sup> digits serial number is displayed to "SN:".

#### **Address Label**

Address label attached to the scanner is shown below.



The details of the label are as follows;

Opticon Sensors Europe B.V. Opaallaan 35,2132XV, Hoofddorp, The Netherlands

<sup>\*</sup>As per European EMC directive 2014/30/EU

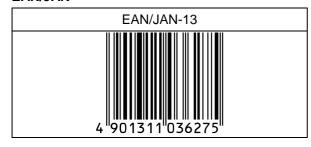
## 11.3 Sample Codes

#### 11.3.1 **1D Barcode**

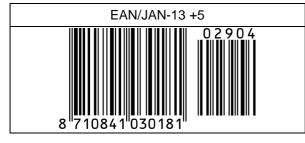
#### UPC

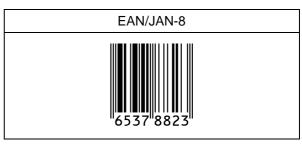









#### EAN/JAN

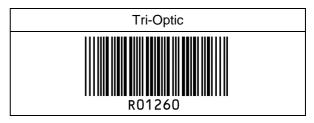






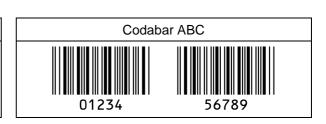


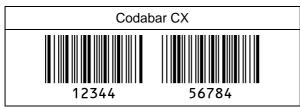



#### Code 39








#### Codabar







#### Industrial 2 of 5 / Interleaved 2 of 5







#### **Code 128**



#### Code 93



#### IATA

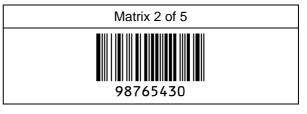


#### MSI/Plessey



#### **UK/Plessey**




#### Telepen



#### Code11



#### Matrix 2 of 5



#### 11.3.2 Postal Code

Chinese Post Matrix 2 of 5



01647100611



Intelligent Mail Barcode

**POSTNET** 

||||....||.||.||.||.||..|| | 012340

**PLANET** 

Japan Postal

Netherland KIX Code

Australian Postal

UK Postal(Royal mail)

4-State Mailmark Barcode

#### 11.3.3 **GS1 DataBar**

**GS1** DataBar Omnidirectional

0165473728281919

**GS1** DataBar Truncated

GS1 DataBar Stacked

 GS1 DataBar Stacked Omnidirectional

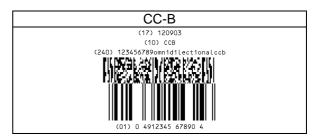


0165473728287645

**GS1** DataBar Limited

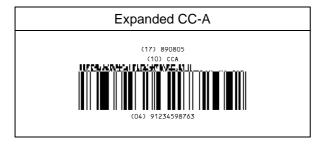
 GS1 DataBar Expanded

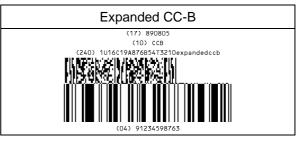



GS1 DataBar Expanded Stacked



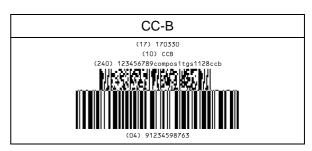
0123456789ABCDEFGHI


#### 11.3.4 **GS1 Composite Code**












#### **Composite GS1-128**







#### **Composite EAN**



0123456789548 (17) 120304 (10) EANCCA 

## EAN-13 CC-B 0123456789548 (17) 120304 (10) EANCCB (240) 21U16C19A876B54T3210ean13cc-b

#### EAN-8 CC-A

12345670 (17) 160401 (10) EANOSCCA LJPHIN NEPTIZETNĮ 



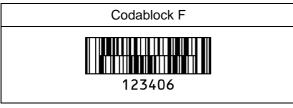
#### **Composite UPC**

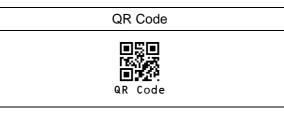
#### UPC-A CC-A

314159265358 (17) 170809 (10) UPCACCA THE PARKS OF PERSONS PROVIDED. 

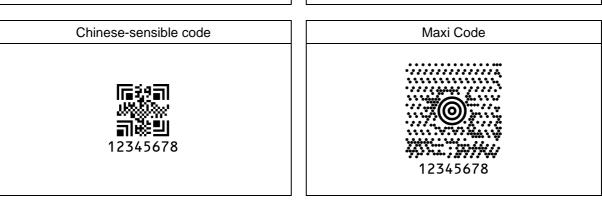


#### UPC-E CC-A


01234565 01234365 (17) 040104 (10) UPCECCA




#### 11.3.5 2D Code














#### 11.3.6 OCR Font (Machine Readable Travel Document)

**ICAO Travel Documents** 

Machine readable Passports

P<JPNABCDEFG<<HIJKLMN<0PQRSTU<VWXYZ<<<<<< L898902C<3JPN4209247M16092711234567890<<<<78

Machine readable Visa-A

Machine readable Visa-B

V<UTOERIKSSON<<ANNA<MARIA<<<<<<< L8988901C4XXX4009078F9612109<<<<<<

Official Travel Documents 1

Official Travel Documents 2

I < UTO ERIKS SON < < ANNA < MARIA < < < < < < < < < < < < < D 231458907 UT 07408122 F 1204159 < < < < < 6

## 11.3.7 OCR Font (Free OCR Edit)

| 0                         | CR-A | OCR-B                     |  |  |  |
|---------------------------|------|---------------------------|--|--|--|
| OCR-A Free Edit<br>Enable |      | OCR-B Free Edit<br>Enable |  |  |  |
| 4567890                   |      | 345678                    |  |  |  |
| 0123456789012             |      | 89012345678               |  |  |  |
| DEFGHIJ                   |      | FGHIJKLMN                 |  |  |  |
| 23456CDEFGH               |      | 56789012ABCD              |  |  |  |
|                           |      |                           |  |  |  |
| Free Edit Disable         |      |                           |  |  |  |

