

L b h a

ZERO Halogen, no-clean, ultra low voids, pin testable, JIS Cu corrosion compliant lead-free-solder paste designed to exceed the expectations for first pass yield and throughput. SAC305 and Low Ag capable.

Cookson Electronics

ALPHA®CVP-390 Product Guide CONTENTS

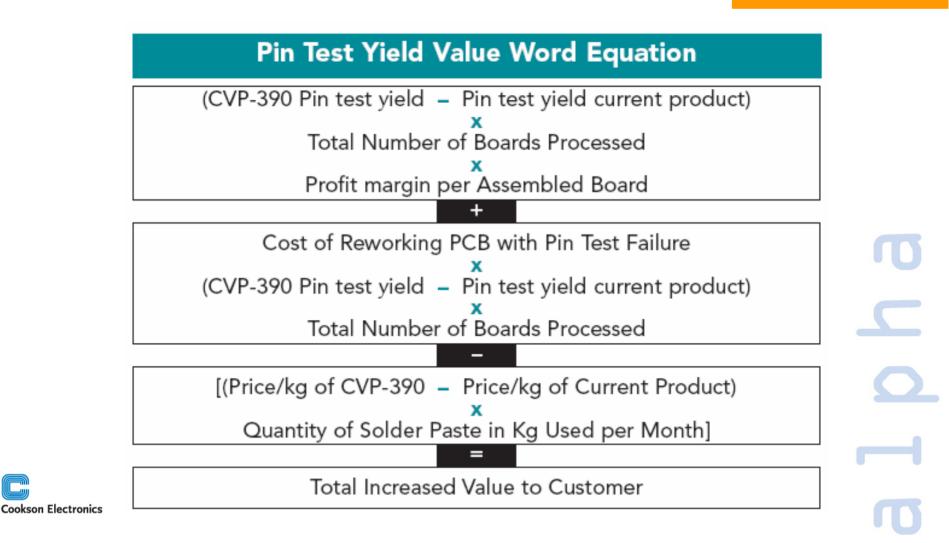
ALPHA® CVP-390 is a lead-free, ZERO-halogen, no-clean solder paste, that available in SAC305, SACX Plus[™] 0807 and SACX Plus[™] 0307 alloys, and is designed to exceed the expectations for first pass yield and throughput

ALPHA®CVP-390:

- 1. Passes IPC 7095 Class III ultra low voids requirement
- 2. Is both pin testable and JIS Cu corrosion compliant
- Enables consistent printing capability up to 180μm (8mil) circles printed with a 80μm (3 mil) stencil. It also possess superior print volume deposit repeatability in a elevated temperature printing environment
- 4. Gives good coalescence up to <200 μ m small circle size of CSP, even under the high preheat soak condition of 180 to 190°C for 60 seconds.

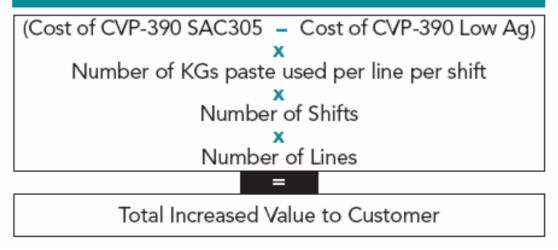
Performance Summary

Process Benefit	CVP-390 Property	Performance Capability	
Print Process Window	Fine Feature Print Definition	Excellent print definition & consistant volumetric performance - down to 180µm (8mil) diameter - 0.4mm (16mil) pitch QFP - Min Area Ratio of 0.6	
	Temperature Window	Capable of printing in temperature from 20 - 32°C (68 - 90°F)	
	Tack/Stencil Life	Long Tack and Stencil Life	
	Print Speed Range	Wide Process Window from 25 - 150 mm/sec (1 - 6"/sec)	
	Peak Reflow Temperature	235 to 245°C (Optimal recommended: < 240°C)	
	Resistance to Voids	Meet IPC 7095 Class III requirements	
	Resistance to Cold & Hot Slump	Preferable J-STD-004A and JIS Level 2	
Reflow Yield	Flux Residue Cosmetics	Clear	
	Solder Spread	80%	
	Random Solderballs	Preferable J-STD-004A and JIS Level 2	
	Flux Residue Characteristics	Pin Testable & Pass JIS Cu Corrosion Test	
	SIR	Meets/Exceeds JIS, J-STD-004B and Bellcore Requirements	
Electrical Reliability	Electromigration Resistance	Meets/Exceeds JIS, Bellcore	
Electrical Kellability	Halide Content	Halide Free	
	J-STD-004B Classification	ROL0	
Environmental	Halogen Content	Zero Halogen, No halogen intentionally added	



Value Creation

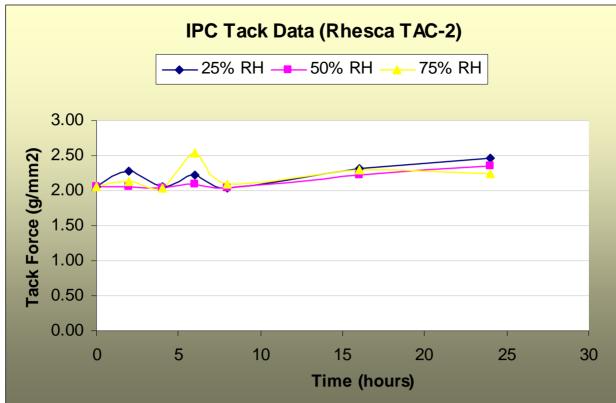
- Key Data Required to quantify the value delivered by CVP-390
 - First pass yield
 - Finest feature component
 - The major defects
 - The defects that cause a board to be scrapped
 - Total volume of boards manufactured per month
 - Value of finished board



Value Creation

Value Creation

Low Ag Value Word Equation

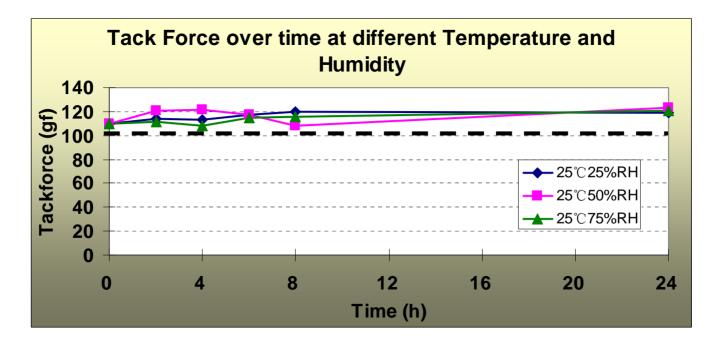


a 1 p h d a

Tack Life – IPC (Rhesca TAC-2)

IPC J-STD-005 TM-650 2.4.44 Classification

Maintains consistent tack strength over 24 hours


Cookson Electronics Less than 1 unit change in tack when tested at a humidity range of 25% - 75% RH measured over a 24hours period

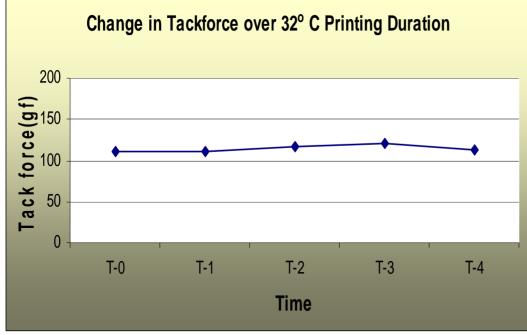
Print Performance

a l b h a

JIS Tack Life

Print Performance

Maintains consistent tack strength over 24 hours

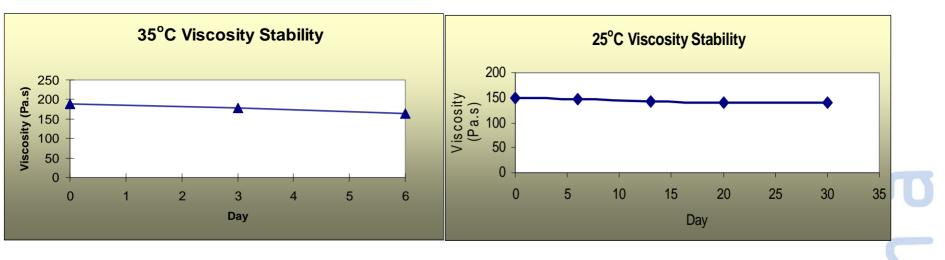

Meets JIS Z3284-1994 Annex 9

Cookson Electronics Tack Force > 100gf for the 24-hr duration

a 1 b h a

High Temperature Printing Duration Stability

Print Performance


No sticking to Squeegee after 4-hr print duration

Tack Force > 100gf is stable for 4-hr

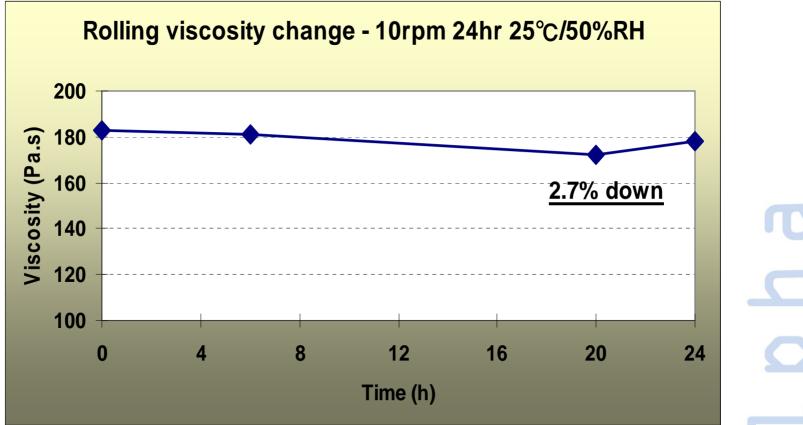
Π

Viscosity Stability

Print Performance

6-day Viscosity Stability

Storage Temperature : 35°C (95°F) Viscosity : 146 – 162 Pas

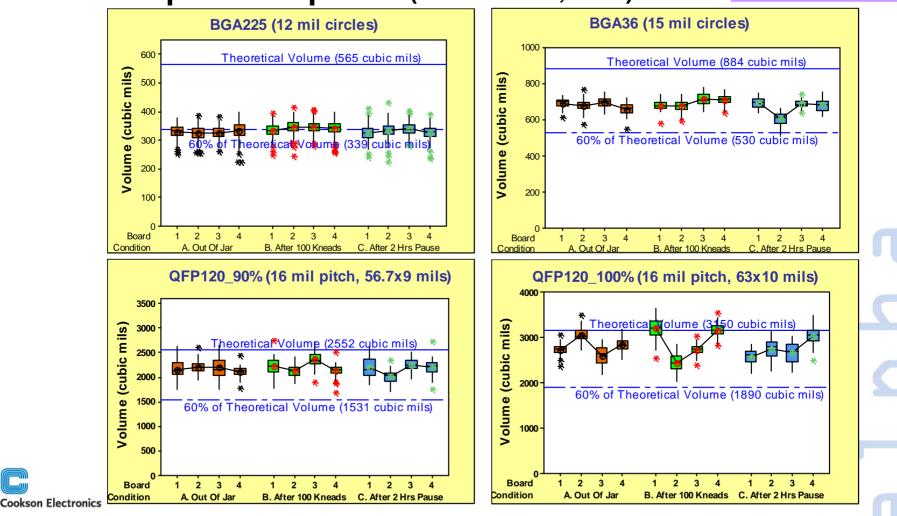

1-month Viscosity Stability

Storage Temperature : 25°C (77°F) Viscosity : 140 – 149 Pas

Cookson Electronics

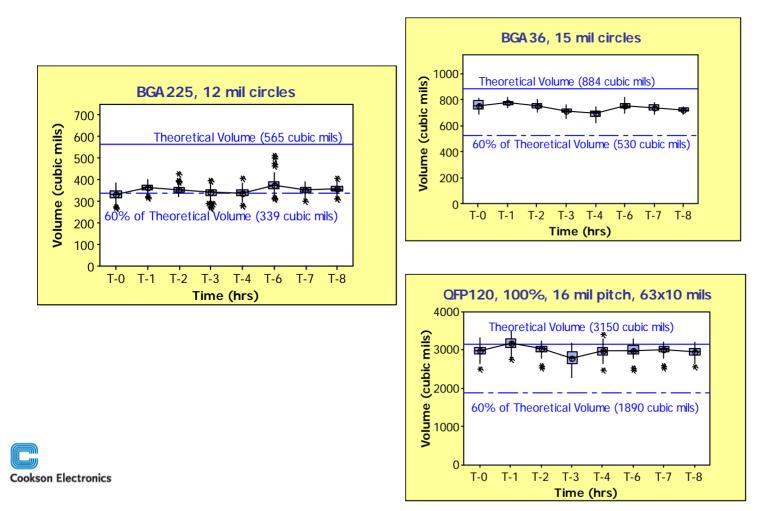
24-hr Continuous Rolling (Kneading) Process

Print Performance



Stable Viscosity measured readings at 0-hr, 6-hr, 20-hr and 24-hr - changes in viscosity is < 10%

0-hr, 6-hr, S < 10%


Print - Response to pause (5-mil Stencil, 25°C)

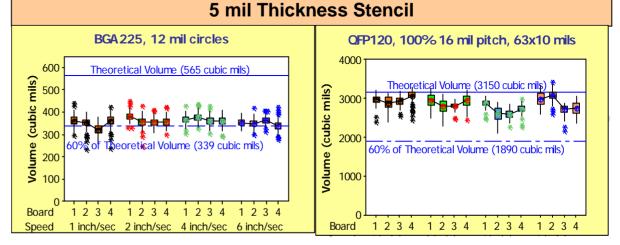
Print Performance

Excellent Out of Jar & Response to Pause Performance

Print - Stencil Life (5-mil Stencil, 25°C)

Print Performance

Excellent 8-hour stencil life performance

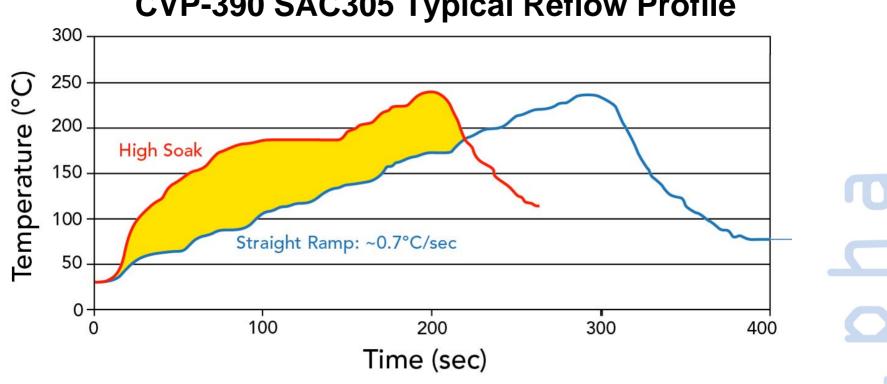

> in L O

> > U

Print Volume Repeatability (25°C)

4 mil Thickness Stencil BGA 56, 10 mil circles QFP120, 100%, 16 mil pitch, 63x10 mils BGA 225, 12 mil circles 4000 400 Volume (cubic mils) Volume (cubic mils) Theoretical Volume (314 cubic mils) Theoretical Volume (452 cubic mils) 3000 Theoretical Volume (2520 cubic mils) 300 2000 300 200 **Nolume** 200 of Theoretical Volume (271 cubic mils) 60% of Theoretical Volume (1512 cubic mils) Theoretical Volume (188 cubic mils 1000 100 1234 1234 1234 1234 1234 1234 1234 1234 Board Board 1234 1234 1234 1234 Board 1 inch/sec 2 inch/sec 4 inch/sec 6 inch/sec Speed 1 inch/sec 2 inch/sec 4 inch/sec 6 inch/sec Speed Speed 1 inch/sec 2 inch/sec 4 inch/sec 6 inch/sec

• For 10 mil BGA circles a 4 mil stencil is recommended

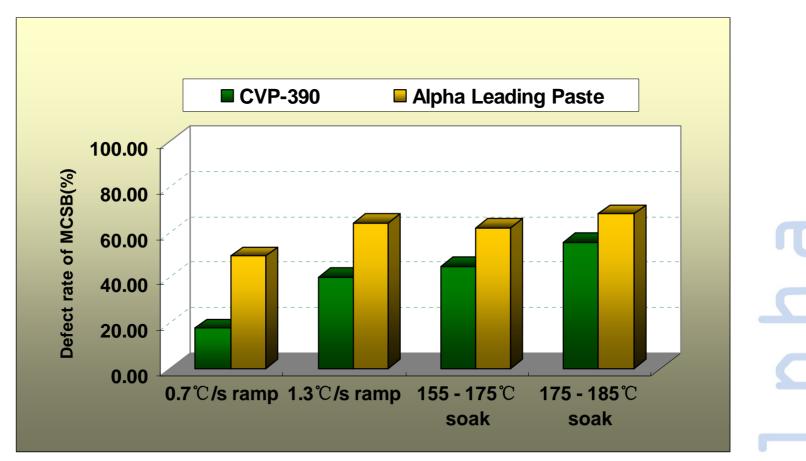


r 10 mil BGA

Cookson Electronics

Print Performance

Reflow Performance



CVP-390 SAC305 Typical Reflow Profile

Mid Chip Solder Ball (MCSB) Test

Reflow Performance

CVP-390 exhibited better MCSB performance

Π

Random Solder Ball Test

175°C Soak Profile, 240°C Peak Temperature

4-hr at 25% RH 0-hr 4-hr at 75% RH 4-hr at 50% RH Pass JIS Level 2

Reflow Performance

Cookson Electronics

Cross Print Solder Ball Test

Cookson Electronics

CVP-390 Alpha Leading Paste 70 Random solder balls / 1 Line 60 50 40 30 20 10 0 0.7°C/s ramp 1.3°C/s ramp 155 - 175°C 175 - 185°C soak soak

Reflow Performance

L D D D D

JIS 'Solder Bath' Spread Performance

80% Spread

High spread performance with both SAC305 and low Ag alloys

SAC305

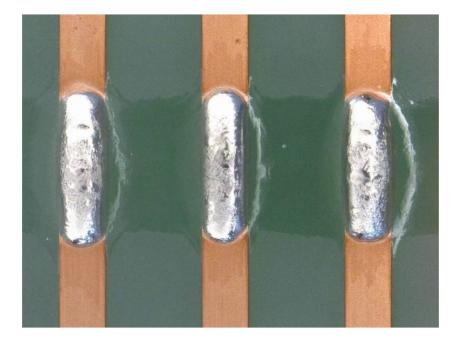
SACX Plus™ 0807

L d d l

Reflow Performance

Flux Residue Tackiness JIS Z 3197 8.5.1 Talc Test

Talc Powder


Cookson Electronics

The Talc Powder is easily brushed off, indicating the residue is not sticky

Reflow Performance

Flux Residue Cosmetics

High Soak Profile – 180-190°C soak for 60 seconds

Clear, colorless flux residue with no evidence of bubbles in flux and flux burning in copper substrate

Reflow Performance

Cold & Hot Slump Test

JIS-Z-3284 Annex 8, 3 minute soak at 150°C.

COLD Slump		Pass 0.2-mm
HOT Slump		Pass 0.4-mm

Cookson Electronics

Reflow Performance

Hot Slump Test

IPC J-STD-005 TM-650 2.4.35 3 minute soak at 150°C for 10 minutes.

and statements

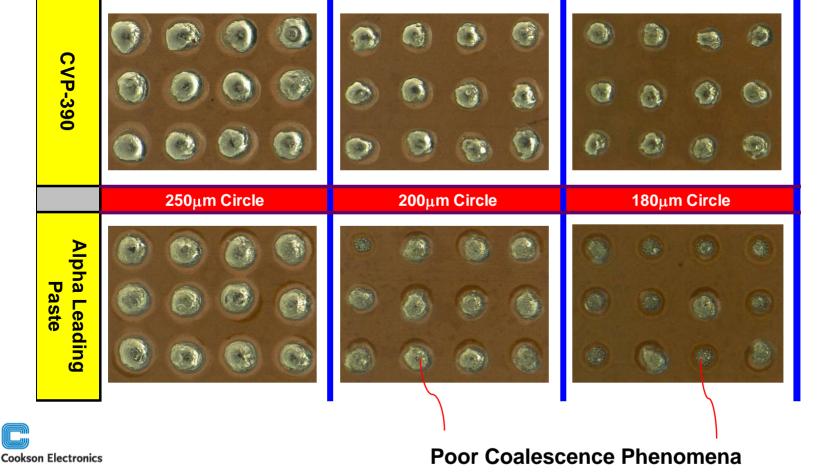
(and show in state

25% RH for 10 minutes

Pass 0.2-mm gap for Relative Humidity Exposure conditions before Reflow

50% RH for 10 minutes

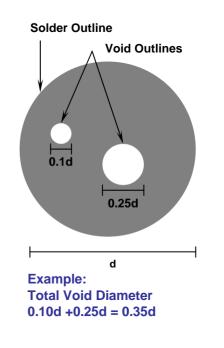
75% RH for 10 minutes



Reflow Performance

Fine Feature Coalescence Test – SAC305

Reflow Performance

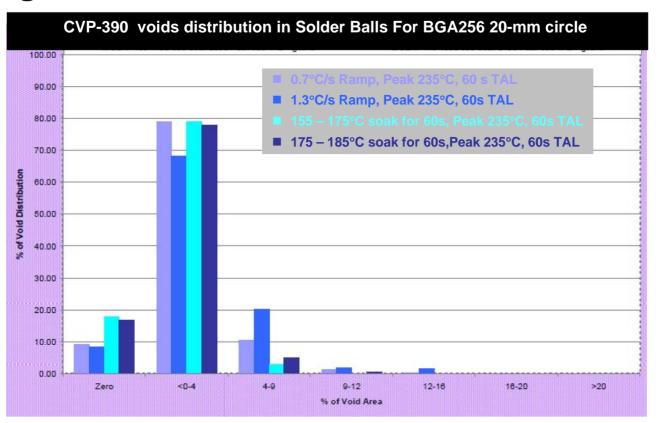

175<u>-180</u>°C, 60 sec soak

Reflow Yield: Application Note

Definition of Voiding Performance

Location of Void	Class I	Class II	Class III
Void in Solder (Solder Sphere)	60% of diameter = 36% of Area	42% of diameter = 20.25% of Area	30% of diameter = 9% of Area
Void at interface of Solder (Sphere) and Substrate	50% of diameter = 25% of Area	25% of diameter = 12.25% of Area	20% of diameter = 4% of Area

IPC Criteria for Voids in BGAs, IPC 7095 7.4.1.6

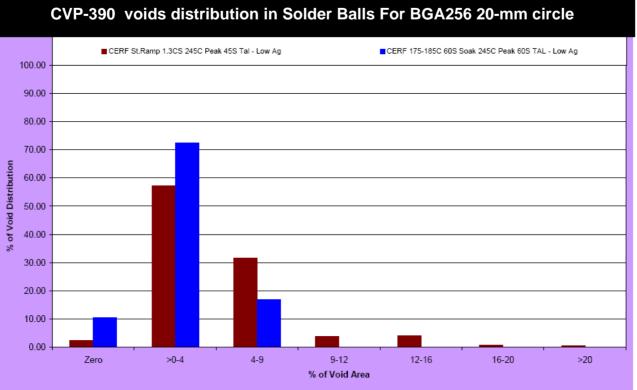

The IPC criteria provide three classes of acceptance for both the solder sphere and the spherepad interface.

Where multiple voids exist, the dimensions will be added to calculate total voiding in the joint.

Reflow Performance

Voiding Performance – SAC305

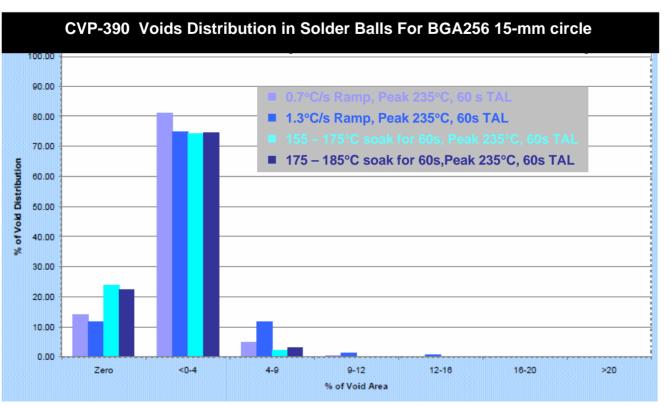
Reflow Performance


• Excellent, Low Voiding Performance

- IPC7095 Class III, soak profiles
- IPC7095 Class II, straight ramp profiles

Voiding Performance – SACX Plus[™] 0807

Reflow Performance

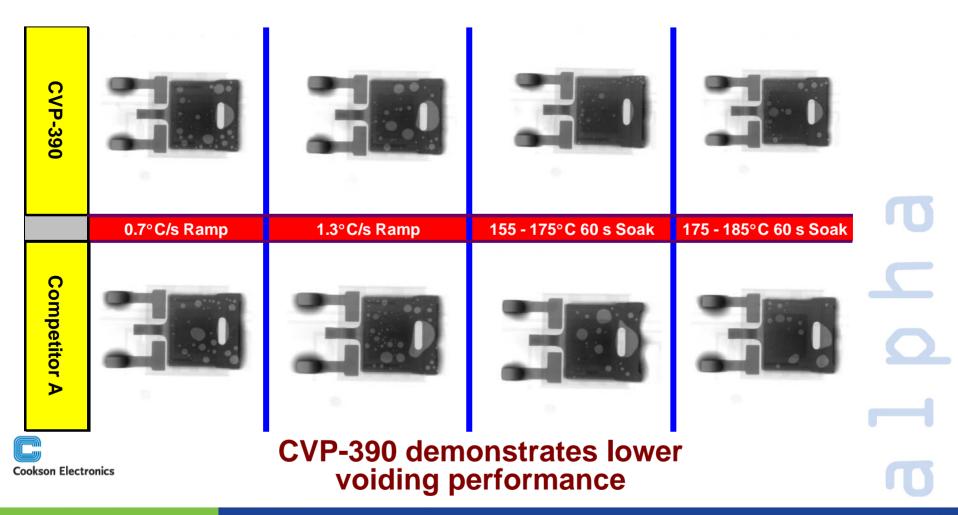


Cookson Electronics

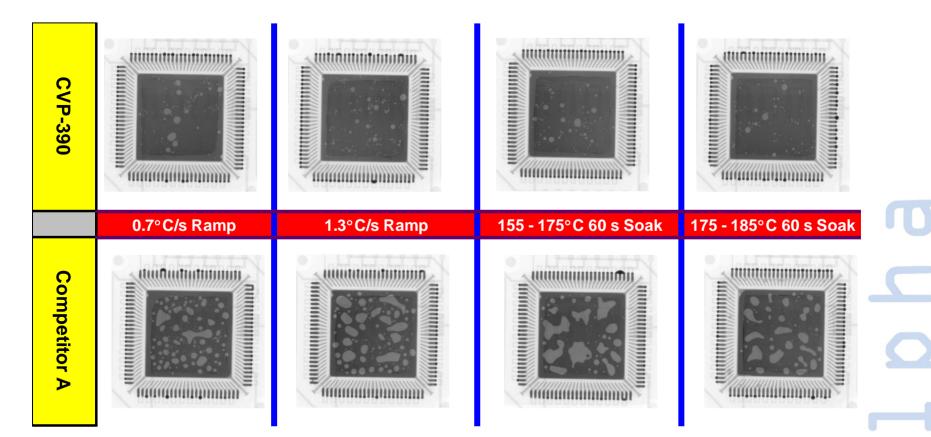
- Excellent, Low Voiding Performance **IPC7095 Class III, soak profiles** •
 - **IPC7095 Class II, straight ramp profiles** •

Voiding Performance – SAC305

Reflow Performance


• Excellent, Low Voiding Performance

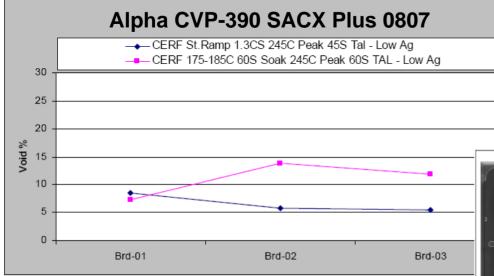
- IPC7095 Class III, soak profiles
- IPC7095 Class II, straight ramp profiles


DPAK Voiding Performance – SAC305

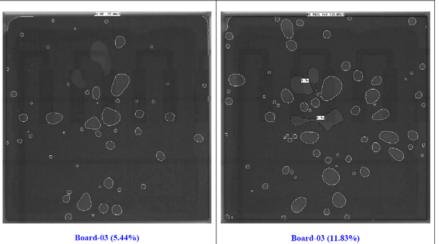
Reflow Performance

MLF Voiding Performance – SAC305

Reflow Performance



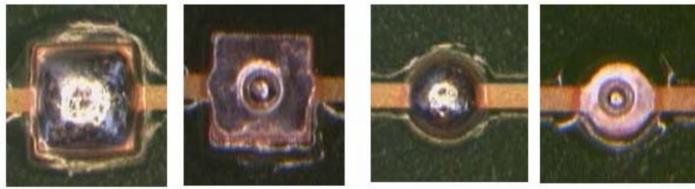
Cookson Electronics


CVP-390 demonstrates lower voiding performance

MLF Voiding Performance – SACX Plus[™] 0807

Reflow Performance

CVP-390 maintains low voiding performance with Low Ag alloys



1.3°C/sec Straight Ramp, 245°C Peak, 45 sec TAL 175 - 185°C soak, 245°C Peak, 60 sec TAL

Flying Probe Pin Testing Vehicle & Test Method

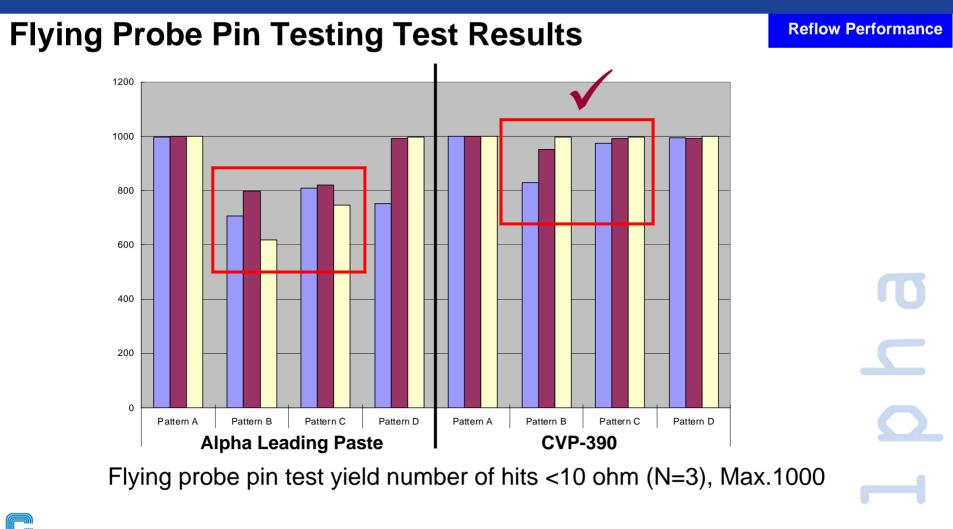
Reflow Performance

Pad type: A

в

С

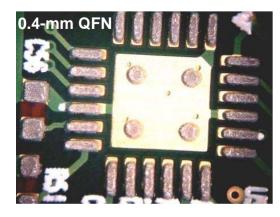
A – 1.0 mm sq pads C - 0.7 mm round pads

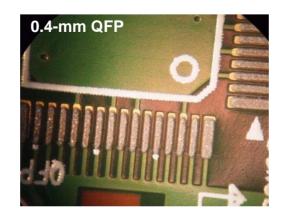

B – 1.0 mm sq pads with 0.33 mm vias
D – 0.7 mm round pads with 0.33 mm vias

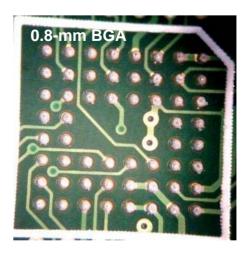
All pads coated with Cu OSP (Entek Plus 106A)

Reflow : 238 degC peak, Probe : Sharp Chisel, 6.5 oz. force

Cookson Electronics


Cookson Electronics

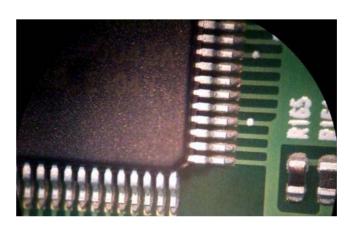


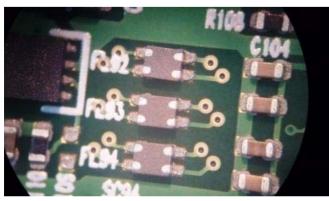

CVP-390 demonstrates better pin testing

Excellent Print Deposits

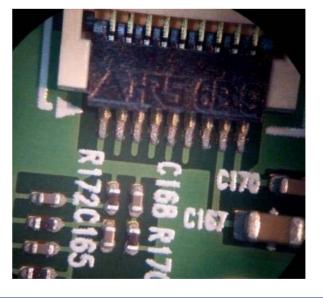
Field Trial Performance

- Printing Parameters
 - Print Speed:
 - Separation Speed:
 - Environmental conditions


40 mm/s 3 mm/s 25°C/21%RH


Cookson Electronics

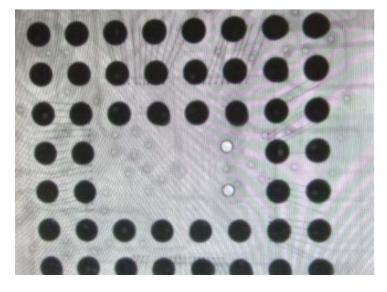
Good Placement Performance


Field Trial Performance

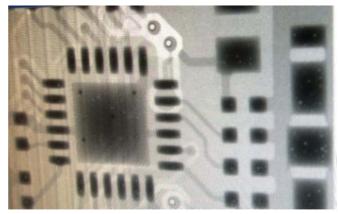
a l b h a

Excellent, Bright Solder Joints Formation

Field Trial Performance



Cookson	Electronics


Preheat Profile						
Probe	RT to 130°C (sec)	RT to 170°C (sec)	RT to 228°C (secs)			
1	44	85	170 170			
2	44	83				
3	50	92	185			
Mean	46	87	175			

Excellent Voids Performance

Field Trial Performance

0.8-mm pitch BGA

0.4-mm QFN

CCC								Halo	ogen Status
SGGS Test Report Test Result(s): Sample Description :		214815(4) R1 Flux PNC1017N (CVP-	Date: 23-Nov-10 390)	Pa	ge 2 of 4				
Test Item(s):	Unit	M	Method	Results	MDL				
Halogen	20.00			2					
Halogen - Bromine (Br)			EN 14582. Analysis was	n.d.	50	\sum			
Halogen - Chlorine (Cl)	mg/kg	With reference to BS performed by IC	EN 14582. Analysis was	n.d.	50	4			
Total (Br + Cl) mg/kg			n.d.						
(3) MDL = Method Detection Limit						ro Halogen' Pro Halogen Standa		v)	2
Halogen Standards									
Standard					Require		Test Method	Status	
JEITA ET-7304 Definition of Halo Soldering Materia			logen Free		pm Br, Cl, F in solder material		Pass	0	
					Post Solo	dering Residues contain < 900	TM EN 14582		

IEC 612249-2-21

A Guideline for Defining

"LowHalogen" Electronic

JEDEC

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

source

ppm each or total of < 1500 ppm Br or

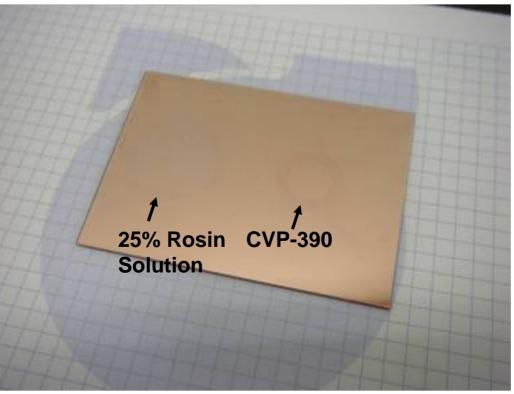
Post soldering residues contain < 1000

CI from flame retardant source

ppm Br or CI from flame retardant

Zero Halogens - No halgonated compounds have been intentionally added to this product

Solids extraction

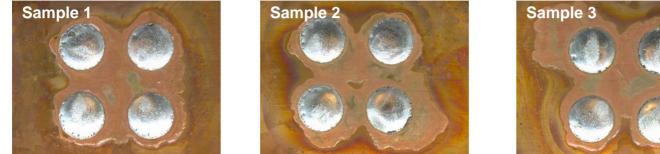

per IPC TM 2.3.34

Pass

Pass

Copper Mirror Corrosion Test –

IPC J-STD-004A/JIS-Z-3197-1999 8.4.2



Reliability

No breakthrough in the Cu layer – Pass Copper Mirror Corrosion Test

Cookson Electronics

Copper Corrosion Test IPC J-STD-004B/JIS-Z-3197-1986

After 40°C/90%RH exposure for 96 hours

No Evidence of Green Corrosion

Reliability

Ag Chromate Test IPC J-STD-004A/JIS Z 3197 8.1.4.2.3

Reference

CVP-390

No presence of white patch Pass Silver Chromate Test

Reliability

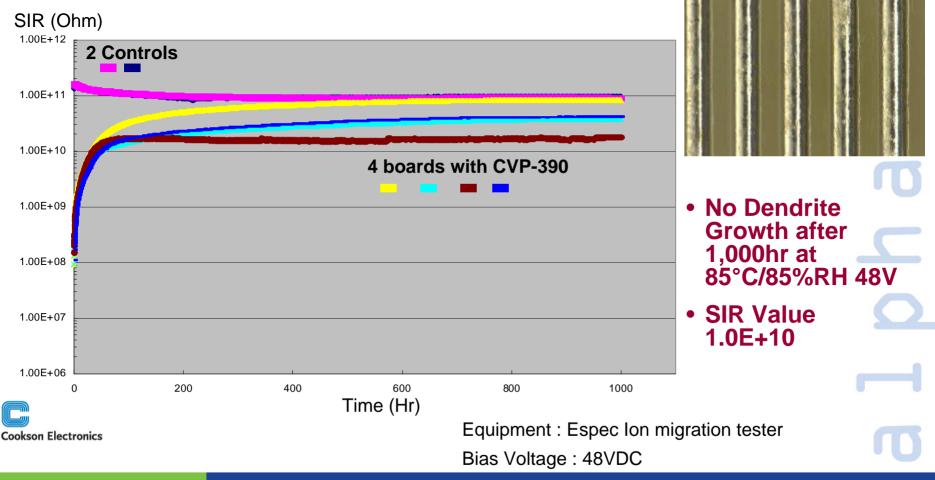
L D h d

Cookson Electronics

Fluoride Spot Test JIS-Z-3197-1999 8.1.4.2.4

No change in coloration of purple lake to yellow concludes the absence of Fluoride in the formulation

Reference


CVP-390

Reliability

Electrical Reliability Data JIS-Z-3197-1999 8.5.4

Reliability

Passed JIS ECM 85°C/85%RH 48V DC 1000 hours test

- Product Value Propositions are
 - IPC 7095 Class III Ultra Low Voids Performance
 - Fine Feature Printing and Coalescence
 - Wider Reflow Process Window
 - Zero Halogen
 - Excellent Pin Testing Performance
 - Pass JIS Cu Corrosion Test
- Targeted Applications
 - Consumer Electronics, Handheld Devices, Mother Board, Server Boards
- Value Created Offerings

– Improved Throughput and Yield

l b h a

Leading Products:

No Clean, SnPb •ALPHA OM-5100 •ALPHA OM-5300 No Clean, Lead-free • ALPHA OM-338 T •ALPHA OM-338 PT • ALPHA OM-340 •ALPHA CVP-390 •ALPHA CVP-360 •ALPHA OM-234HF No Clean, Low Temperature Lead-free •ALPHA CVP-520 Water Soluble, SnPb • ALPHA WS-809 Water Soluble, Lead-free • ALPHA WS-820

Global Manufacturing Sites

AMERICAS

California, USA Florida, USA Illinois, USA New York, USA Pennsylvania, USA Mexico City, Mexico Monterrey, Mexico Manaus, Brazil Sao Paulo, Brazil

Cookson Electronics

EUROPE

Woking, England Turnhout, Belgium Cholet, France Budapest, Hungary Hatar, Hungary Naarden, Netherlands East Kilbride, Scotland

ASIA-PACIFIC

Hong Kong, China Guangxi, China Shenzhen, China Shanghai, China Chennai, India Hiratsuka, Japan Sihung City, Korea Singapore Taoyuan, Taiwan

Global Sales Support

AMERICAS

California, USA Georgia, USA Illinois, USA New Jersey, USA Pennsylvania, USA Ontario, Canada Guadalajara, Mexico Buenos Aires, Argentina Sao Paulo, Brazil

L

Cookson Electronics

EUROPE

Woking, England Turnhout, Belgium Cholet, France Langenfeld, Germany Hatar, Hungary Dublin, Ireland Milano, Italy Naarden, Netherlands East Kilbride, Scotland

ASIA-PACIFIC

Hong Kong, China Shenzhen, China Beijing, China Chengdu, China Guangxi, China Nanjing, China Shanghai, China Suzhou, China Tianjin, China Xiamen, China Bangalore, India Chennai, India Hiratsuka, Japan Sihung City, Korea Penang, Malaysia Muntinlupa, Philippines Singapore Taoyuan, Taiwan Bangkok, Thailand Thomastown, Australia Auckland, New Zealand Vietnam

Global Customer Technical Support

AMERICAS

California, USA New Jersey, USA Georgia, USA Guadalajara, Mexico Monterrey, Mexico Buenos Aires, Argentina Sao Paulo, Brazil Manaus, Brazil

Cookson Electronics

EUROPE

Woking, England Turnhout, Belgium Cholet, France Langenfeld, Germany

ASIA-PACIFIC

. 2......

Hong Kong, China Shenzhen, China Beijing, China Shanghai, China Suzhou, China Tianjin, China Bangalore, India Chennai, India Hiratsuka, Japan Sihung City, Korea Penang, Malaysia Singapore Taoyuan, Taiwan