DISPLAY Elektronik GmbH

CONTROL BUTTON

DE CB-480480A VMH-PW-N

Product Specification

Ver.: 8

Revision History

Revision	Date	Originator	Detail	Remarks
0	08.04.2022	ZFY	Initial Release	
1	29.04.2022	LQ	Modify Outline Drawing(B)	P5
			Modify Basic Parameters	P4
			Modify Outline Drawing(C)	P5
2	23.08.2022	LQ	Modify Pins and Module Parameter	P6
			Modify Optical Characteristic	P7
			Add OPERATING GUIDE	P12-19
3	17.12.2022	10	Modify Outline Drawing(D)	P5
S	17.12.2022	LQ	Modify Luminance	P6&P7
4	08.01.2023	10	Modify Basic Parameters	P4
4	06.01.2023	LQ	Modify Reliability	P11
5	28.04.2023	LQ	Modify Outline Drawing(D)	P5
			Modify Basic Parameters	P4
			Modify Outline Drawing(D)	P5
6	23.05.2023	ZYJ	Modify Module Size	P6
O	23.03.2023	ZIJ	Modify Positioning Points and Positions	P10
			Modify Movement Amount of Pressing the	P11
			Rotating Button	
7	26.05.2023	LQ	Modify Outline Drawing(F)	P5
8	05.09.2023	LL	Modify Outline Drawing	P5
		_		

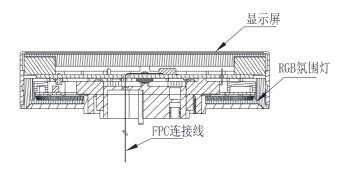
Table of Contents

No. Item	Page
1. General Description	4
2. Basic Parameters	4
3. Mechanical Characteristics	4
3.1. Appearance picture	4
3.2. Basic Structure	4
3.3. Outline Drawing	5
4. Interface Pins Definition	5
5. Module Parameter	6
6. Optical Characteristics	7
7. Reliability	9
8. Product Packaging Information	11
9. Operation Process	12
9.1. Operation Flow Chart	12
9.2. Detailed Description of Operation	13
10. Annular LED Status Indicator	13
11. Communication Protocol.	14
11.1. Communication Protocol Format	14
11.2. Communication Instruction Description	14
11.3. Check Bit Description	16
12. Secondary Development Description	17
12.1. Preparation of Software Tools and Picture Materials	17
12.2. Image Processing	17
12.3. Data Download	18
Annendix 1 application case: coffee machine controller process	10

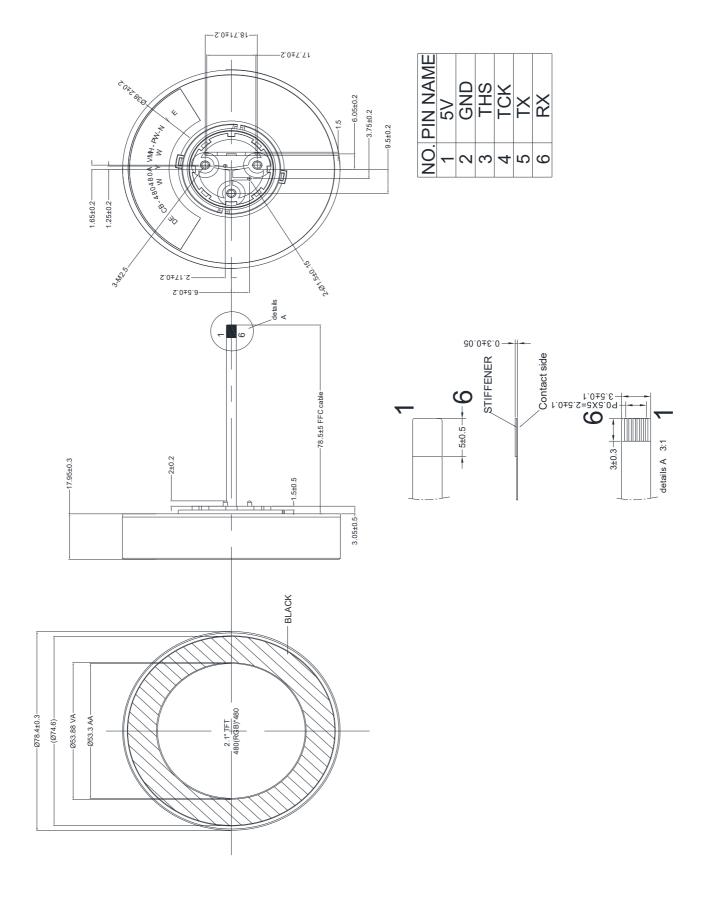
1. General Description

De CB-480480A VMH-PW-N series module is a module that perfectly combines the display screen, encoder, push button and status LED into a rotating button display. The unique innovative structure and exquisite manufacturing process of the module make it have excellent reliability and excellent control experience. It is applicable to the demand of rotating button control in many industrial applications of electronic products

2. Basic Parameters


- 1. 2.1 inch circular display 480*480 TFT/UART Interface
- 2. Annular status LED indicator
- 3. EC4301-AX-11.2/6.2-20P20 encoder
- 4. Integral push button
- 5. FPC standard 0.5mm-6P interface
- 6. Three point standard screw installation

3. Mechanical Characteristics


3.1. Appearance picture

3.2. Basic Structure

3.3. Outline Drawing

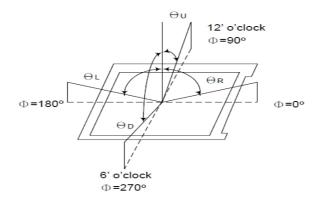
4. Interface Pins Definition

PIN	Symbol	Definition	Remarks
1	5V	Power supply	
2	GND	Power Ground	
3	THS	Software Burning pin	3.3V
4	TCK	Software Burning pin	3.3V
5	TX	Data Output	3.3V
6	RX	Data Input	3.3V

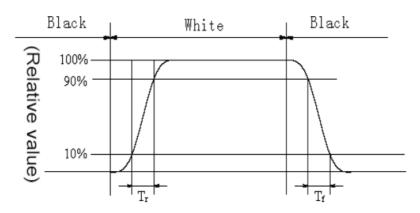
5. Module Parameter

Features	Details	Remark
Module Size	Ф78.40 x 17.95 mm	-
Viewing Area	Ф53.88 mm	-
Active Area	Ф53.30 mm	-
Display Size	2.1"	-
View Direction	ALL	-
Display mode	Transmissive / Normal black	-
Color	262k	-
Resolution	480 x 480	-
Luminance	300cd/m ²	-
Operating Temperature	-20°C~70°C /96H	-
Storage Temperature	-30°C~80°C /96H	-
Operating Voltage	4.5V~7V, typ: 5V	-
Current Consumption	150mA~350mA, typ:280mA	-
Weight	(TBD)	-

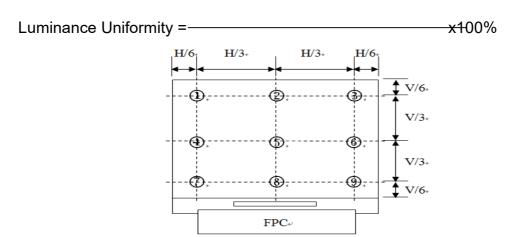
6. Optical Characteristics


Ta=25°C

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Contrast Ratio	C/R	$\theta = 0$ °	800	1000	-	-	Note(4)
NTSC Ratio	S	θ =0°	64	69	-	%	Note(7)
Luminance	L	θ =0°	240	300	-	cd/m2	Note(5)
Luminance uniformity	UW	θ =0°	70	80	-	%	Note(3)
Response Time	TR+ TF	25 °C	-	30	35	ms	Note(2)
	RX			0.628		NTSC (x,y)	Note(6)
	RY	θ = 0° (Center) Normal	,	0.350			
	GX			0.297			
Color	GY		0.05	0.661	. 0. 05		
Coordination	BX	viewing angle	-0.05	0.142	+0.05		
	BY	B/L On		0.077			
	WX			0.277			
	WY			0.341			
	θL		80	85	-		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	θR	0/5 40	80	85	-	Degree	N ((4)
Viewing Angle	θυ	C/R>10	80	85	-		Note(1)
	<i>θ</i> D		80	85	-		

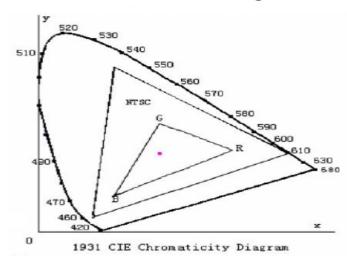

Test Conditions:

2. The test systems refer to Note 8.


Note1: Definition of Viewing Angle: The viewing angle range that the CR>10

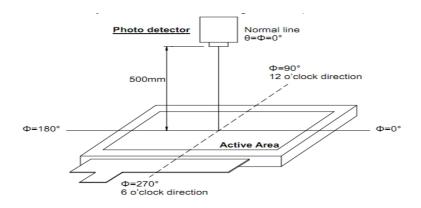
Note2: Definition of Response time: Sum of TR and TF

Note 3: Definition of Luminance Uniformity: Active area is divided into 9 measuring areas, every measuring point is placed at the center of each measuring area.


Note4: Definition of Contrast Ratio (CR): measured at the center point of panel

Note 6: Definition of Color Chromaticity (CIE 1931)

Color coordinates of white & red, green, blue measured at center point of LCD.


Note 7: Definition of NTSC ratio:

LCD surface.

Note 8: Definition of optical measurement system.

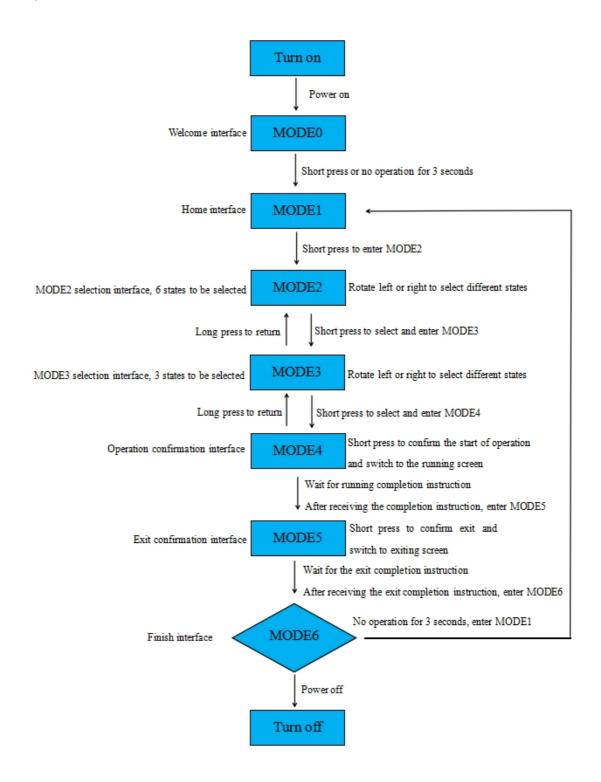
The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen.(Response time is measured by Photo detector TOPCON BM-7, Field of view: 1°/Height: 500mm.)

7. Reliability

Item	Test Condition	SPECIFICATIONS
Insulation	Apply a voltage of 250V DC between the metal outer	The resistance between the metal
Impedance	rotating button and the base for 1 minute.	outer rotating button and the base
Impedance	Totaling battern and the base for 1 minute.	is more than 100M Ω .
Rated	Apply a voltage of 300V AC between the metal outer	No insulation damage
Voltage	rotating button and the base for 1 minute.	
Full Rotation Angle		360° (No stop point)
Rotation		15±7mN.m
Torque		(150±70gf.cm)
Positioning		(100±7 ogi.cm)
Points and		20 positioning points
Positions		(interval angle 18°±2 °)
Axial	At the shaft end, apply a static load force of 5Kgf	The shaft is not damaged and
Compression	along the axial direction and press down for 10	press is normal; The electrical
Strength	seconds (the screw is fixed on the face shell).	performance is normal
Axial	At the shaft end, apply a static load force of 5Kgf	The shaft is not damaged and
Drawing	along the axial direction and pull up for 10 seconds	press is normal; The electrical
Strength	(the screw is fixed on the face shell).	performance is normal
	,	Torque: - 50% ~ + 10% of the
	Under no-load condition, the shaft rotates 30000 at	initial value
Rotational	the speed of 600 ~ 1000 cycles / hour (1 cycle refers	Rotating button display LCD can
Life	to 360° clockwise and 360° counterclockwise)	be powered on and adjusted
	,	normally.
		The surface of the outer rotating
	00 + 0°0 - 00 - 050/ DH - 00 + 4Hz-	button is free of cracking and
High	60 ± 3°C, 90 ~ 95%RH, 96 ± 4Hrs	bubbling, and the display screen
Humidity	Before function test and visual inspection, the	is free of OCA falling off.
Experiment	product must have enough recovery time, at least	Rotating button display LCD can
	1.5 hours in normal temperature and humidity.	be powered on and adjusted
		normally.
		The surface of the outer rotating
	70 + 200 00 + 411	button is free of cracking and
High	70 ± 3°C, 96 ± 4Hrs	bubbling, and the display screen
Temperature	Before function test and visual inspection, the	is free of OCA falling off.
Experiment	product must have enough recovery time, at least	Rotating button display LCD can
,	1.5 hours in normal temperature and humidity.	be powered on and adjusted
		normally.

Thermal Cycling Test	所段 出度 放置时间 Durationure 1	The surface of the outer rotating button is free of cracking and bubbling, and the display screen is free of OCA falling off. Rotating button display LCD can be powered on and adjusted
	Before function test and visual inspection, the product must have enough recovery time, at leas 1.5 hours in normal temperature and humidity.	normally.
Force of Pressing the Rotating Button	Apply an axial force to the face cover plate until it does not move, and take the large value in the fo application process.	ce 250±30gf
Movement Amount of Pressing the Rotating Button	Fix the product on the face cover plate, apply a static load force of twice the driving force directly above the cover plate, and measure the moving distance when the rotating button is pressed to immobility.	0.5±0.2 mm
Press Life of the Rotating Button	After the product is fixed, apply a pressing pressure of 250±30gf axially, press it to the end and releas to let it return freely. Press 100000 times. The pressing speed is 1500-1800 times per hour.	, ,

8. Product Packaging Information


Storage environment and conditions:

- 1. It shall be stored in a well ventilated environment with temperature of 15° C ~ + 25° C, relative humidity of 40% 65% and no harmful gas around.
- 2. During storage and transportation, the stacking height of products shall not exceed 5 boxes.

Items	Normal Parameters	Limit Parameters	Material Valid Status	Remarks
Temperature	25°C	85°C	Normal	
Humidity	65%	95%	Normal	

9. Operation Process

9.1. Operation Flow Chart

9.2. Detailed Description of Operation

9.2.1. Power on:

Turn on the module power supply switch and the module will be powered o;

9.2.2. MODE0:

Welcome interface, short press or no operation for 3 seconds to enter MODE1

9.2.3. MODE1:

Standby interface, short press to enter MODE2 for selection;

9.2.4. MODE2:

In MODE2 selection interface, rotate left or right to switch different states of MODE2. Short press to confirm the MODE2 state and enter MODE3. Long press to return to MODE1. There are six states for MODE2 to choose from;

9.2.5. MODE3:

In MODE3 selection interface, rotate left or right to switch different states of MODE3. Short press to confirm the MODE3 state and enter MODE4. Long press to return to MODE2. There are three states for MODE3 to choose from:

9.2.6. MODE4:

Operation Confirmation interface, short press to confirm the start of the operation, the display switches to the operating interface, long press to return to MODE3 selection interface, and enter MODE5 after receiving the operation completion instruction;

9.2.7. MODE5:

Pour out confirmation interface, short press to confirm the start of pour out, the display switches to the pouring out interface, and enter MODE6 after receiving the pour out completion instruction;

9.2.8. MODE6:

Finish interface, no operation for 3 seconds to enter MODE1;

9.2.9. Power off:

Turn off the power supply and the module will be powered off;

10. Annular LED Status Indicator

When the button is triggered, the color is switched randomly. When it is running or exiting, it is the breathing light effect.

11. Communication Protocol

UART serial port of TTL level is used for communication, asynchronous serial full duplex mode is adopted, baud rate is 115200bps, 8 data bits, no check bit, 1 stop bit;

11.1. Communication Protocol Format

SEQ	Data Content	Bytes	Value	Content Description
D1	Start code	1 Byte	0xA5	Fixed to 0xA5
D2	Start code	1 Byte	0x5A	Fixed to 0x5A
D3	Length	1 Byte	0x0A	Data length, including start code and check code
D4	Function word	1 Byte	0xA1	Command function
D5	Mode	1 Byte	[0-6]	Corresponding to seven different modes
D6	Reserve	1 Byte		Reserved value
D7	CRC1	1 Byte		CRC16 check value
D8	CRC2	1 Byte		CRC16 check value
D9	End code	1 Byte	0XFC	Fixed to 0XFC
D10	End code	1 Byte	0XCF	Fixed to 0XCF

11.2. Communication Instruction Description

11.2.1. Mode Switching Instruction

After the module is switched from MODE0-MODE6, it will continuously issue the instruction once per second. After receiving the return instruction and checking that it is consistent, it will stop issuing;

The module issues instructions:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XA1	MODE	Reserve	CRC1	CRC2	0XFC	0XCF

MODE:0-6, representing the current mode of the module;

Return instruction:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XB1	MODE	Reserve	CRC1	CRC2	0XFC	0XCF

MODE:0-6, which represents the mode received by the lower level. When it is consistent with the current mode of the module, it is judged that the lower level has correctly received the mode switching instruction, and the module will stop issuing the mode switching instruction;

11.2.2. MODE2 Selection Instruction

When the module selects MODE2 state (switches and enters Mode3), in addition to sending the switching mode instruction, it will also send the MODE2 selection instruction. Like the switching mode instruction, it will be sent continuously once a second before the return instruction is received and the inspection is consistent;

The module issues instructions:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XA2	MODE2	Reserve	CRC1	CRC2	0XFC	0XCF

MODE2:0-5, which represents the selection of six states of MODE2.

Return instruction:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XB2	MODE2	Reserve	CRC1	CRC2	0XFC	0XCF

MODE2:0-5, which represents the MODE2 states received by the lower level. When it is consistent with the MODE2 status of the module, it is judged that the lower level has received the correct MODE2 state value. At this time, the module will stop issuing the MODE2 selection instruction.

11.2.3. MODE3 Selection Instruction

When the module selects MODE3 state (switches and enters MODE4), in addition to sending the switching mode instruction, it will also send the MODE3 selection instruction. Like the switching mode instruction, it will be sent continuously once per second before the return instruction is received and the inspection is consistent;

The module issues instructions:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XA3	MODE3	Reserve	CRC1	CRC2	0XFC	0XCF

MODE3:1-3, which represents the selection of three states of MODE3.

Return instruction:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XB3	MODE3	Reserve	CRC1	CRC2	0XFC	0XCF

Represents the MODE3 states received by the lower level. When it is consistent with the MODE3 state of the module, it is judged that the lower level has received the correct MODE3 state value. At this time, the module will stop issuing the MODE3 selection instruction.

11.2.4. Start Instruction

When the module is in the MODE4 state and short press the button to enter the operation confirmation state, issue the start instruction. Like the mode switching instruction, it is continuously sent once per second before receiving the return instruction (no consistent inspection is required);

The module issues instructions:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XA4	0X01	Reserve	CRC1	CRC2	0XFC	0XCF

Return instruction:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XB4	ST	Reserve	CRC1	CRC2	0XFC	0XCF

ST=1, indicates start; ST=2, indicates finish; When receiving ST=2, the module will switch from MODE4 to MODE5;

11.2.5. Exit Instruction

When the module is in the MODE5 state and short press the button to enter the exit confirmation state, issue the exit instruction. Like the mode switching instruction, it is continuously sent once per second before receiving the return instruction (no consistent inspection is required);

The module issues instructions:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XA5	0X01	Reserve	CRC1	CRC2	0XFC	0XCF

Return instruction:

D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
0XA5	0X5A	0X0A	0XB5	ST	Reserve	CRC1	CRC2	0XFC	0XCF

ST=1, indicates exit; ST=2, indicates exit complete; When receiving ST=2, the module will switch from MODE6 to MODE6.

11.3. Check Bit Description

```
Please refer to the following code to calculate the check bit:
#define MODBUSLIB ZERO
                                                        (0)
#define MODBUSLIB M DATALENTH MAX
                                                           (0x7D)
#define MODBUSLIB_LOSTCOMM_THRESHOLD
                                                             (5)
/* CRC Related */
#define MODBUSLIB_FIXED_POLY_VALUE
                                                          (0Xa001)
#define MODBUSLIB_BYTE_LENGTH
                                                          (7)
#define MODBUSLIB CRC INITIAL VALUE
                                                          (0Xffff) /* 0Xffff */
U16 Modbus_OneByteCrc(U16 u16Crc, U8 u8_Data)
{
    U16 u8_BitCounter = MODBUSLIB_ZERO;
    u16Crc = (u16Crc ^ u8 Data);
    for (u8 BitCounter = MODBUSLIB ZERO; u8 BitCounter <= MODBUSLIB BYTE LENGTH;
u8_BitCounter++)
    {
        if (0x01 == (u16Crc \& 0x01))/*if LSB is one*/
        {
           u16Crc >>= 1;/*if LSB is not one then rotate data right only once*/
           u16Crc = u16Crc ^ MODBUSLIB_FIXED_POLY_VALUE;/*again XOR with fixed
polynomial value*/
        }
        else
        {
           u16Crc >>= 1;/*if LSB is not one then rotate data right only once*/
    }/*end of for(ucByte = MODBUSLIB_ZERO; ucByte <= BYTE_LENGTH; ucByte++)*/
    return (u16Crc);
}
U16 Modbus_Calculate16CRC(U8 *pu8_Data, U8 u8_Length, U16 u16CRCInitialValue)
    U8 u8 Loop = MODBUSLIB ZERO;
    U16 u16CRC Value = MODBUSLIB ZERO;
    u16CRC_Value = u16CRCInitialValue; /* Initial CRC value */
    for (u8_Loop = MODBUSLIB_ZERO; u8_Loop < u8_Length; u8_Loop++)
    {
        u16CRC Value = Modbus OneByteCrc(u16CRC Value, *pu8 Data++);
    return (u16CRC_Value);
}
```

12. Secondary Development Description

This module has the function of secondary development. Users can replace the interface of the module through the following methods.

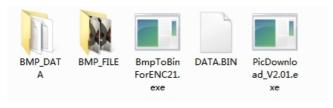
12.1. Preparation of Software Tools and Picture Materials

Download tools: USB to serial port tool;

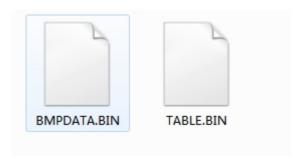
Software Tools:

1: Batch program------BmpToBinForENC21.exe

2: Picture download software-----PicDownload_V2.01.exe

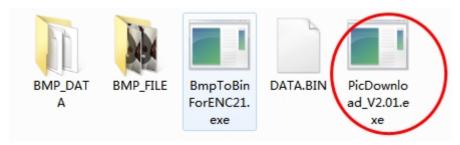

Picture Materials:

The user replaces the pictures with corresponding serial numbers as required, and the pictures are in BMP format, and all pictures need to be placed in BMP_FIL folder, the corresponding table of picture naming is as follows:

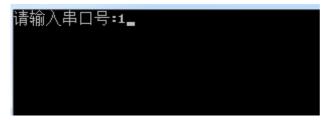

Picture Naming	Corresponding Interface
000.BMP	Welcome interface
001.BMP	Standby interface
101.BMP	Work-pattern 1 interface
102.BMP	Work-pattern 2 interface
103.BMP	Work-pattern 3 interface
104.BMP	Work-pattern 4 interface
105.BMP	Work-pattern 5 interface
106.BMP	Work-pattern 6 interface
201.BMP	Setting the working status 1 interface
202.BMP	Setting the working status 2 interface
203.BMP	Setting the working status 4 interface
301.BMP	Working running status 1 interface
302.BMP	Working running status 2 interface
303.BMP	Working running status 3 interface
304.BMP	Working running status 4 interface
401.BMP	Finish interface
501~505.BMP	Picture of the demo run countdown
601~605.BMP	Demo cup countdown picture

12.2. Image Processing

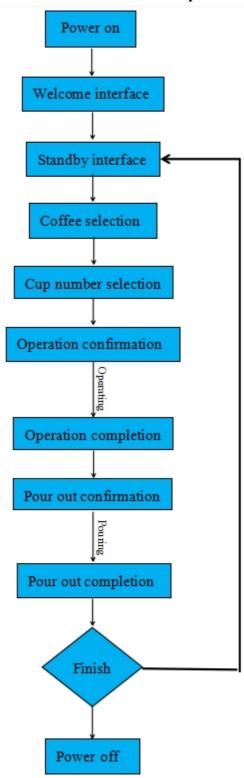
1. Prepare BMP_File folder and place BMP_FILE folder and batch program BmpToBinForENC21.exe in the same folder, and an empty folder named BMP_DATA needs to be created in this folder, and then execute the batch program BmpToBinForENC21.exe;



2. After execution, in BMP_ DATA folder, two files will be generated in it. BMPDATA.BIN is a data file in which all picture data are placed in turn, TABLE.BIN is a table file, which is also equivalent to an index file;



12.3. Data Download


After generating BMPDATA.BIN file and TABLE.BIN file, connect the module to the computer through
the serial port. The connection characteristics can be tested by sending instructions with the serial port
assistant to ensure that the connection is normal, and then download the data with the picture download
software;

2. Plug in the USB-to-serial port tool and adjust the COM port to COM1, PicDownload_V2.01.exe, After the download, the window will automatically close and complete the replacement of picture data at this time;

Appendix 1 application case: coffee machine controller process

