Features

- 1-channel isolated barrier
- 230 V AC supply
- Dry contact or NAMUR inputs
- Relay contact output
- Fault relay contact output
- Line fault detection (LFD)
- Reversible mode of operation
- Up to SIL2 acc. to IEC 61508

Function

This isolated barrier is used for intrinsic safety applications. It transfers digital signals (NAMUR sensors/mechanical contacts) from a hazardous area to a safe area.
The proximity sensor or switch controls a form C changeover relay contact for the safe area load. The normal output state can be reversed using switch S1. Switch S2 allows output II to be switched between a signal output or an error message output. Switch S3 is used to enable or disable line fault detection of the field circuit.
During an error condition, the relays revert to their deenergized state and the LED indicate the fault according to NAMUR NE44.

Assembly

C

 SILD

Connection

General specifications

Signal type
Supply
Connection
Rated voltage
Power loss
Power consumption
Input
Connection
Rated values
Open circuit voltage/short-circuit current
Switching point/switching hysteresis
Line fault detection
Pulse/Pause ratio

Output

Connection
Output I
Output II
Contact loading
Energized/De-energized delay
Mechanical life
Transfer characteristics
Switching frequency
Electrical isolation
Output/power supply
Output/Output

Directive conformity

Electromagnetic compatibility
Directive 2004/108/EC
Low voltage
Directive 2006/95/EC

Conformity

Electromagnetic compatibility
Protection degree
Protection against electric shock

Ambient conditions

Ambient temperature
Mechanical specifications
Protection degree
Mass
Dimensions
Data for application in connection with Ex-areas
EC-Type Examination Certificate Group, category, type of protection Input

Digital input
terminals 14,15
207 ... 253 V AC, 45 ... 65 Hz
1.2 W
$\leq 1.3 \mathrm{~W}$
terminals 1+, 2+, 3-
acc. to EN 60947-5-6 (NAMUR)
approx. 8 V DC / approx. 8 mA
1.2 ... $2.1 \mathrm{~mA} /$ approx. 0.2 mA
breakage $\mathrm{I} \leq 0.1 \mathrm{~mA}$, short-circuit $\mathrm{I}>6 \mathrm{~mA}$
$\geq 20 \mathrm{~ms} / \geq 20 \mathrm{~ms}$
output I: terminals 7, 8, 9 ; output II: terminals 10, 11, 12
signal ; relay
signal or error message ; relay
$253 \mathrm{VAC} / 2 \mathrm{~A} / \cos \phi>0.7 ; 126.5 \mathrm{VAC} / 4 \mathrm{~A} / \cos \phi>0.7 ; 40 \mathrm{VDC} / 2 \mathrm{~A}$ resistive load
approx. 20 ms / approx. 20 ms
10^{7} switching cycles
$\leq 10 \mathrm{~Hz}$
reinforced insulation according to IEC 61140, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$ basic insulation according to IEC 61140, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$

EN 61326-1:2006

EN 50178:1997

NE 21
IEC 60529
IEC 61140
$-20 \ldots 60^{\circ} \mathrm{C}\left(-4 \ldots 140^{\circ} \mathrm{F}\right)$

IP20
approx. 150 g
$20 \times 119 \times 115 \mathrm{~mm}(0.8 \times 4.7 \times 4.5 \mathrm{in})$, housing type B2

PTB 00 ATEX 2081, for additional certificates see www.pepperl-fuchs.com
〔x II (1)GD [EEx ia] IIC [circuit(s) in zone 0/1/2]
EEx ia IIC
10.6 V
19.1 mA

51 mW (linear characteristic)

253 V AC / 126.5 V AC (Attention! U_{m} is no rated voltage.)
$253 \mathrm{~V} \mathrm{AC} / 2 \mathrm{~A} / \cos \phi>0.7 ; 126.5 \mathrm{~V} \mathrm{AC} / 4 \mathrm{~A} / \cos \phi>0.7 ; 40 \mathrm{VDC} / 2 \mathrm{~A}$ resistive load
253 V AC (Attention! The rated voltage can be lower.)
safe galvanic isolation acc. to EN 50020, voltage peak value 375 V
safe galvanic isolation acc. to EN 50020 , voltage peak value 375 V

EN 50014, EN 50020

116-0035

116-0145

Control drawing

General information

Supplementary information

116-0047

EC-Type Examination Certificate, Statement of Conformity, Declaration of Conformity, Attestation of Conformity and instructions have to be observed where applicable. For information see www.pepperlfuchs.com.

Configuration

Switch position

\mathbf{S}	Function		Position
$\mathbf{1}$	Mode of operation Output I (relay) energized	with high input current	I
		with low input current	II
$\mathbf{2}$	Assignment Output II (relay)	switching state like output I (dault signal output $n n y y$	I
$\mathbf{3}$	Line fault detection	ON	II
		OFF	I

Operating status

Control circuit	Input signal
Initiator high impedance/ contact opened	low input current
Initiator low impedance/ contact closed	high input current
Lead breakage, lead short-circuit	Line fault

Factory settings: switch 1,2 and 3 in position I

