Unimec ${ }^{\text {TM }}$

8 contact functions 2 pole \cdot distinct tactile feel

DISTINCTIVE FEATURES

$12.6 \times 12.6 \mathrm{~mm} ; \mathrm{h}=15.7 \mathrm{~mm}$
2 pole
Momentary, latching or quiet
8 contact functions
Up to 10,000,000 cycle lifetime

ENVIRONMENTAL SPECIFICATIONS

- Sealing : IP54 according to IEC 60529
- Working temperature : $-40^{\circ} \mathrm{C} /+160^{\circ} \mathrm{C}$
- Storage temperature : $-65^{\circ} \mathrm{C} /+160^{\circ} \mathrm{C}$
- Soldering : IEC 60068-2-20

ELECTRICAL SPECIFICATIONS

- Recommended load
- Gold contacts : min. $0.5 \mu \mathrm{~mA}$ - max. 250 mA - 120V - 9W AC - 6W DC
- Silver contacts : min. 0.5mA - max. 250mA - 120V - 9W AC - 6W DC
- Contact resistance : max. $100 \mathrm{~m} \Omega$ (initially)
- Insulation resistance : $>10 \mathrm{M} \Omega$
- Contact bounce : max. 10 ms
- Dielectric strength between adjacent contacts : 1000 V for 2 min
- Insulation resistance between adjacent contacts : $5 \times 1013 \Omega$
- Capacitance between adjacent contacts :0.5 pF

MECHANICAL SPECIFICATIONS

- Standard actuation force : 2.5 N
- Max. actuation force : 100 N for 10 sec
- Travel : 1.8 mm
- Lifetime : momentary : $>10,000,000$ cycles latching : 5,000,000 cycles

MATERIALS

- Housing : LCP UL94V0
- Actuator : LCP UL94V0
- Switch spring : Stainless steel
- Key spring : Stainless steel
- Latch pin : Stainless steel
- Fixed contacts : Silver: $\mathrm{SnCu}+2 \mu \mathrm{NI}+3 \mu \mathrm{Ag}$ Gold : SnCu $+2 \mu \mathrm{NI}+3 \mu \mathrm{Au}$
- Moving contacts :

Silver : Stainless steel $+3 \mu \mathrm{Ag}$
Gold : Stainless steel $+3 \mu \mathrm{Ag}+1 \mu \mathrm{Au}$

- Terminals : SnCu $+2 \mu \mathrm{NI}+3 \mu \mathrm{Sn} 100$

All tolerance if not otherwise specified $\pm 0.2 \mathrm{~mm}$.

Unimec ${ }^{\text {min }}$

8 contact functions •
 2 pole \cdot distinct tactile feel

All tolerances unless otherwise noted : $\pm 0.2 \mathrm{~mm}$

\rightarrow PCB LAYOUT

$\varnothing 0,9$

With 3mm LED
16923 and 16924

With round LED 16920 and 16921

With square LED 16922

- up
- - down

CIRCUIT DIAGRAM

With round LED
16920 and 16921

With rect. LED 16922

\cdots
 WIRING

Select the contact function you require - and design your PC board accordingly

1 make contact

1 break contact
 over contact

2 make contact 2 break contact

2 change over contact
$\stackrel{+}{0-}$

2 make \& 2 break
reverse polarity

BUILD YOUR PART NUMBER

*quiet function has silver terminals, in case of gold terminals the part number is 15420

ABOUT THIS SERIES

Notice : please note that not all combinations of above numbers are available.Refer to www.apem.com for further information.
(D)

Laser marking on the switch for identification : 15400 A; 15420 H; 15401 E; 15402 F; 15451 I; 15452 J
(B)

Accessories: See pages 379-384 or cap and bezel options

Unimec ${ }^{\text {min }}$

8 contact functions •
 2 pole \cdot distinct tactile feel

VARIO SUPPORT MOUNTING

For all types of Unimec ${ }^{\text {T" }}$ switches with bezels - 16310-16315 and 16324-16326.
More options available as custom.

$\frac{\frac{228}{276}}{16.410(1 \times 1)}$

$\frac{1116}{16.412(1 \times 3)}$
$\frac{105}{16.413(1 \times 4)}$

16.414 (1×5)

LED COMPONENT SPECIFICATIONS															
Part Nos.		16920/16921			16922			16923					16924		
Color (G=green, $\mathrm{Y}=$ yellow, $\mathrm{R}=$ red)		G	Y	R	G	Y	R	B	G	Y	W	R	G	Y	R
Color Codes		22	04	08	02	04	08	00	20	40	65	80	23	45	88
ABSOLUTE MAXIMUM RATINGS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)															
Power	mW	100	100	100	135	135	135	105	70	60	120	60	150	130	300
Current forward	mA	30	30	30	30	30	30	30	20	20	25	20	40	40	90
Forward peak current	mA	1000	50	50	90	90	90	200	60**	60**	100	60**	500	500	1000
Voltage reverse	V	6	5	5	5	5	5	5	3	3	5	3	12	12	5
Operating temperature	${ }^{\circ} \mathrm{C}$	$-40 /+100$	$-25 /+100$		$-55 /+100$			$-25 /+85$					$-55 /+100$		
Storage temperature	${ }^{\circ} \mathrm{C}$	$-55 /+100$	$-25 /+100$		$-55 /+100$			$-30 /+100$					$-55 /+100$		
Soldering temperature	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & +260 \text { for } \\ & \text { max. } 3 \\ & \text { sec } \end{aligned}$	$\begin{gathered} +245 \text { for max. } \\ 3 \mathrm{sec} \end{gathered}$		+300 for max. 3 sec			+260 for max. 5 sec					+300 for max. 3 sec		
ELECTRICAL-OPTICAL CHARACTERISTICS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)															
Voltage forward	Typ. V	2.4	2.0	2.0	2.1	2.2	2.3	2.1	2.1	2.1	3.8	2.0	2.1*	2.3***	2.4***
	Max. V	3.0	3.0	3.0	3.0	3.0	3.0	2.8	3.0	3.0	4.3	3.0	2.5*	2.5***	3.8***
Current reverse	$\mu \mathrm{A}$	NA	100	100	100	100	100	2	10	10	50	10	10	10	10
Wave length	nm	568	590	660	565	585	635	460	563	585	NA	650	570	587	635
Spread	$\varnothing \mathrm{nm}$	NA	10	10	10	10	10	40	40	40	NA	40	25	45	45
Spread angle	degree	20	20	20	45	45	45	20	45	45	25	45	25	45	45
Luminous Intensity	Min. mcd	4	1	0.8	1.5	2.5	2.5	20	9.0	5.6	630	5.6	71****	71****	100****
	Typ. mcd	12	3	1.6	2.5	3.0	5.0	25	25	16	1000	16	112****	112****	160****
Orientation	The longer pin is the anode, the shorter is the cathode.														

*/F=20mA, **Pulse width 1 ms Duty cycle 1:5, ***/F=50mA, ****Luminous Flux mlm

HOW TO GET THE BEST RESULTS WITH MEC SWITCHES ?

These guidelines are offered to users of MEC Switches as an aid to ensure successful and reliable switch operation. Please see the technical specifications for details on operating and storage temperatures and soldering guidelines to make sure you select the best switch for your application. When wave soldering is taking place, MEC strongly recommend that the temperature profile is analyzed and compared with the temperature rating of the switch. It is also important to monitor the accumulated heat buildup from both the pre-heat zones and the solder zone.

All standard accessories for unimec ${ }^{\text {TM }}$ switches are made from ABS plastic with a maximum operating temperature of $65^{\circ} \mathrm{C}$. It is strongly recommended that accessories are mounted after soldering of the switch.

LEDs have their own temperature specifications. When fitted in a switch the LED will determine the max. operating temperature, i.e. 16923 has an upper temperature limit of $85^{\circ} \mathrm{C}$!

MOUNTING AND DISMOUNTING

If switches are to be mounted in rows it is essential that the recommendations regarding spacing are followed. PC board thickness should be $1.4 \pm 0.2 \mathrm{~mm}$ and terminal hole diameter should be 0.9 mm .

All unimec ${ }^{\text {TM }}$ caps and bezels are easily snapped onto the switch modules and can be changed at a later time with the exception of the unimec 16.700 cap. Once this cap is installed it is not designed to be removed. To do so may cause damage to the switch and the PC board if not done very carefully.

If the 16.300 or 16.700 cap must be removed from a unimec ${ }^{\text {TM }}$ latching switch, make sure that the switch actuator is in the released, upper position before attempting to remove the cap. This will prevent possible damage to the internal latching pin.

SOLDERING AND CLEANING UNIMEC ${ }^{\text {m }}$ SERIES

Most assembly and field problems experienced by users of unsealed switches are caused by the contamination of the contacts during soldering and cleaning.

Contact contamination may be recognized by an increase in contact resistance and possible intermittent operation of the switch, especially in low power applications. Care must be taken not to submerge the switch in cleaning agents or
spray the switch during cleaning. The switch must be protected at all times to prevent contamination by flux or cleaning liquids.

For unimec ${ }^{T M}$ latching versions we recommend to leave the actuator in the released upper position during soldering. This makes the switch more resistant to overheating.

SOLDERING - THROUGH HOLE VERSIONS

Hand soldering: Max. $350^{\circ} \mathrm{C}$ for max. 3 sec., this applies for both low temperature and high temperature versions.

Wave soldering: Heat built up in the switch during pre-heating and soldering must not exceed the maximum operating temperature of the switch. If, for some reason, a high pre-heating temperature is required, MEC recommend the high temperature switches. In any case peak temperature must not exceed $260^{\circ} \mathrm{C}$, and soldering time is max 10 sec .
(IEC-68-2-20)

ROHS COMPLIANCE

As of 1 July 2006 MEC has completed the conversion to RoHS compliance. For more info please see our homepage www.apem.com

TEMPERATURE LIMITS:

Switch	$160^{\circ} \mathrm{C}$
LEDs	$85 / 100^{\circ} \mathrm{C}$
Accessories	$65{ }^{\circ} \mathrm{C}$

PACKAGING

Unimec ${ }^{\text {TM }}$ switches are packed in rigid tubes of 50 pieces each.

A box contains 1.000 pcs.

