EVBVNCLO_SE202428 MANUAL

© 2011 by GLYN GmbH & Co KG, Microcontroller Group

History

)			
03.06.11	PDO	V1.0	Start

Inhaltsverzeichnis

1.	Einleitung 1.1. Lieferumfang	3 4
2.	<u>Hardware</u>	
	2.1. Das Seiko Display 2.1.1. Verbindung VNC2 mit Seiko-Display 2.1.2. Pinbelegung 2.1.3. Display-Steckverbinder	5 6 6 7
	2.2. Das Board: EVBVNCLO_SE202428 2.2.1 JP1 13pol. Steckerleiste 2.2.2 Step-Up Regler 2.2.3 Einstellungen Vinculo-Board	8 8 9 9
3.	Software	
	3.1. Ansteuerung Display3.2. Ansteuerung Touch3.3. Demosoftware	10 12 13
	nhang A Schaltplan EVBVNCLO_SE202428	15
	nhang B Bestückungsplan EVBVNCLO_SE202428	16
	hang C Stückliste EVBVNCLO_SE202428	17
	hhang D Pinbelegung 20QVF1H	18
<u>An</u>	hang E Pinbelegung 24QVF1H/J und 28QVF1H/J und Touch Panel	19

© 2011 GLYN GmbH & Co. KG

Alle Rechte vorbehalten. Kein Teil dieser Dokumentation darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderem Verfahren) ohne schriftliche Genehmigung der GLYN GmbH & Co. KG, D-65510 Idstein reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Bezüglich des Inhaltes dieser Dokumentation sowie des EVBVNCLO_SE202428 Software & Hardware Paketes übernimmt die GLYN GmbH & Co. KG, D-65510 Idstein keinerlei Haftung oder Garantie. Die Firma GLYN GmbH & Co. KG, D-65510 Idstein behält sich das Recht der Überarbeitung dieses Werkes oder des EVBVNCLO_SE202428 Software & Hardware-Paketes vor. Alle Programme und Beschreibungen wurden nach bestem Wissen erstellt und mit Sorgfalt getestet. Dennoch können wir Fehler nicht ganz ausschließen. Aus diesem Grund übernimmt die GLYN GmbH & Co. KG keine Garantie für mögliche Fehler und Folgeschäden, die in Verbindung mit der Bereitstellung, Leistung oder Verwendung dieses Materials stehen.

1. Einleitung

Das Evaluationboard EVBVNCLO_SE202428 benötigt zur vollen Funktion drei weitere Komponenten:

- VNCLO-MB1
- VNC2 Debug Module
- Sowie ein Seiko-Display des Typs 20QVF1H, 24QVF1H/J 28QVF1H/J (J-mit Touch Panel)

Diese Komponenten können sie natürlich über GLYN beziehen, gerne erstellen wir ihnen hierzu ein Angebot.

Die Platine wird mit Seiko-Displays von 2,0", 2,4" und 2,8" bestückt. Bei den Größen 2,4" und 2,8" kann auch ein Touch Panel hinzugewählt werden (Kennung "J"). Bei der Größe 2,0" muss die Ausgangsspannung des Step-up Reglers von 12V auf ca. 9,3V durch Austausch zweier Widerstände angepasst werden (maximaler IF=20mA für alle Displays), siehe Kapitel 2.2.2.

Seiko kombiniert die OLED Brillanz mit der Sicherheit der etablierten TFT-Technologie. Die Displays des Typs 20QVF1H, 24QVF1H/J 28QVF1H/J verfügen über 160° Blickwinkel (80° in alle Richtungen) und können hochkant oder quer eingebaut werden. Die Langzeitverfügbarkeit wird von Seiko garantiert. Die Varianten mit 2,4" und 2,8" können mit fast unsichtbarem Touch Panel geliefert werden. Das CPU-Interface des Displays kann in 4 Modi angesteuert werden: 8/9/16/18-Bit - verwendet wird hier der 8-Bit Mode. Im Display integriert ist ein Display-Controller R61505W von RENESAS.

Eine Steckerleiste (JP1) erlaubt die Ein- und Ausgabe von Analogwerten und Digitalsignalen sowie den Anschluß einer seriellen Schnittstelle über z.B. ein TTL-232R-3V3 Kabel von FTDI.

Die Demosoftware zeigt Bitmaps vom USB-Stick auf dem Display als Slideshow an. Weitere Beispiele werten den Touchsensor aus und zeigen interaktive Menüs (z.B. einen Taschenrechner). Alle Demos werden mit der FTDI-Toolchain bearbeitet und geflasht.

Die neuesten Informationen, Beispiele, Datasheets und Applikation Notes für FTDI Controller finden Sie unter:

http://www.ftdichip.com/

1.1. Lieferumfang

Zum Lieferumfang des EVBVNCLO_SE202428 gehört folgendes:

- CD mit diesem Manual, Datasheet, Toolchain*, Softwaredemos, Treiber und zusätzlichen Infos
- EVBVNCLO_SE202428

Das Display, das Vinculo-Board und das Debug-Modul sind optional und müssen separat bestellt werden.

Die FTDI Toolchain unterstützt Windows 7, Vista und XP. Die Spannungsversorgung des EVBVNCLO_SE202428 erfolgt durch das Vinculo-Board.

* XP/VISTA/7 (Windows is TM of Microsoft Coorporation)

2. Hardware

2.1. Das Seiko Display

Dank der integrierten IPS-Technologie bieten die Displays nahezu die gleichen optischen Eigenschaften wie die OLED-Displays. Ein großer und symmetrischer Blickwinkel von 80° über alle Seiten erhält die Auswahlmöglichkeit, das Display sowohl im Portrait, als auch im Landscape Modus anzusteuern.

Des Weiteren gibt es bei diesen Displays keine Lebensdauerunterschiede zwischen den einzelnen Grundfarben. Die Versorgungsspannung der Displays beträgt maximal +3.3V. Da die LED's für die Hintergrundbeleuchtung in Reihe geschaltet sind und die Displays keinen LED Treiber besitzen, muss die Spannung für das Backlight zusätzlich zur Verfügung gestellt werden. Der Strom für das Backlight beträgt typ. 20mA. Auf dem EVBVNCLO_SE202428 wird allerdings nicht der Strom geregelt, sondern die Spannung. Die 2,4" und 2,8" Displays erhalten eine Versorgungsspannung von ca. 12,1V und das 2,0" Display von ca. 9,3V.

Die zur Ansteuerung verfügbaren Modi für das CPU-Interface sind:

- 8-Bit
- 9-Bit
- -16-Bit
- -18-Bit

Durch die Architektur des VNC2-Chips und dessen I/O-Ports wird auf dieser Platine ausschließlich der 8-Bit Mode benutzt, welcher allerdings den langsamsten Mode darstellt.

Mit den Displays können maximal 262.144 Farben dargestellt werden.

Der integrierte Display-Controller R61505W von RENESAS ist ein Ein-Chip LCD-Controller für ein TFT-Display. Er beinhaltet einen Bildspeicher für maximal 240RGB x 320 (QVGA) Pixel, den Zeilen und Spaltentreiber sowie die Spannungserzeugung des LCD.

2.1.1 Verbindung VNC2 mit Seiko-Display

VNCLO				Seiko		
VNCL2-Pin	VNCLO- Pin	Name	Port		Bemerkung	
24	J6-1	IOBUS12	В0	DB10		
25	J6-2	IOBUS13	B1	DB11		
26	J6-3	IOBUS14	B2	DB12		
27	J6-4	IOBUS15	В3	DB13		
28	J6-5	IOBUS16	B4	DB14		
29	J6-6	IOBUS17	B5	DB15		
31	J6-7	IOBUS18	B6	DB16		
32	J6-8	IOBUS19	B7	DB17		
12	J5-4	IOBUS1	A1	WR		
13	J5-5	IOBUS2	A2	RS		
16	J5-8	IOBUS5	A5	CS		
63	J5-2	IOBUS42	A6	RD		
14	J5-6	IOBUS3	A7	Res		
15		IOBUS4	A0	LED	NC	
43	J2-0	IOBUS24	C0	X2	AIN0	R6
44	J2-1	IOBUS25	C1	Y1	AIN1	
45	J2-2	IOBUS26	C2	X1	AIN2	
46	J2-3	IOBUS27	C3	Y2	AIN3	R5
47	JP2-3	IOBUS28	C4		AIN4	Messeingang
48	JP2-4	IOBUS29	C5		AIN5	Messeingang
41		IOBUS22	C6	PWREN#		Auf VNCLO

2.1.2 Pinbelegung

Pinbelegung für die Seiko-Displays siehe Anhang D bis E

2.1.3 Display-Steckverbinder

Für das 2,0" Display:

HIROSE FH26-45S-0.3SHW(05)

Für das 2,4" und 2,8" Display:

MOLEX 502250-3591

- 35-poliger FPC-Konnektor
- 0.3 mm Pitch
- Kontaktierung TOP oder BOTTOM

Für das Touch-Panel:

OMRON XF2U-0415-3A

- 4-poliger FPC-Konnektor für das optionale Touch-Panel
- 0.5 mm Pitch
- Kontaktierung TOP oder BOTTOM

2.2 Das Board: EVBVNCLO_SE202428

Auf der Oberseite verfügt das Board über 2 Konnektoren:

U\$2 ist für die 2,4" und 2,8" Displays. Bevor der Anschluß des Displays eingeschoben wird, muss der schwarze Klemmbalken angehoben werden. Nach Einstecken des Anschlusses wird dieser nach unten gedrückt. Es empfiehlt sich zwischen Display und Platine einen klebenden Isolator zu platzieren.

U\$3 ist für das 2,0" Display vorgesehen. Die Befestigung ist wie bei obigen Displays.

An den beiden Pads "GND" und "TP1" kann man die Versorgungsspannung für die LED-Hintergrundbeleuchtung messen.

Auf der Unterseite gibt es die beiden Touchpanel-Konnektoren **U\$1** und **U\$4** für 2,4" und 2,8" und die 13-polige Steckerleiste **JP1**. Pin 1 ist durch eine 1 markiert, die Pinbelegung ist wie folgt:

2.2.1 13pol Steckerleiste JP1

Pin	Belegung JP1
1	GND
2	RTS / IO34-Pin55
3	NC
4	RXD / IO33
5	TXD / IO32
6	CTS / IO35-Pin56
7	AIN5 / IO29-Pin48
8	AIN4-IO28-PIN47
9	IO36-Pin57
10	IO37-Pin58
11	IO38-Pin59
12	IO39-Pin60
13	Vcc (3,3V)

Auf JP1 kann das serielle Kabel **TTL-232R-3V3** aufgesteckt werden (ab V1.1). Pin 1 des Kabels (schwarz) auf Pin 1 der Steckerleiste. Die Spannungsversorgung über dieses Kabel ist nicht vorgesehen. Hiermit kann die UART des VNC2 abgefragt werden. Allerdings müssen die Pins RXD/TXD/RTS/CTS mit Hilfe des IO-Multiplexers neu zugeordnet werden (keine Defaulteinstellung).

2.2.2 Step-Up Regler

Die Ausgangsspannung des Step-Up Reglers kann auf der Oberseite zwischen dem GND-Pad und TP1 gemessen werden. Die Ausgangsspannung dient ausschließlich zur Versorgung der LEDS der Hintergrundbeleuchtung des Displays. Sie wird durch folgende Formel berechnet: |Vout| = 1.25(1+R1/R3)

Vout/ Display	R1	R3
9,3V / 2,0"	33k	5,1k
12,1V /2,4", 2,8"	13k	1,5k

2.2.3 Einstellungen Vinculo-Board

Auf dem Vinculo Board muss der AREF-Jumper auf 3,3V gestellt werden. Ansonsten arbeitet das Touch-Panel fehlerhaft.

Wenn der PWR-Selector auf VBUS steht, wird das Display sowohl von der USB-Device Buchse als auch von dem Debug-Modul versorgt. Bei Stellung PSU ist es die Power-Buchse und das Debug-Modul.

3. Software

3.1 Ansteuerung Display

Das Display ist fest auf den 8-Bit Mode eingestellt. Der Zugriff auf die I/O-Ports erfolgt mit "port" - Befehlen. Dafür zuständig sind folgende Definitionen:

```
port vII_gpio_cntrl_pa_1@0x181;
port vII_gpio_cntrl_pb_1@0x182;
#define WR vII_gpio_data_tx_pa_1.1
#define RS vII_gpio_data_tx_pa_1.2
#define CS vII_gpio_data_tx_pa_1.5
#define RD vII_gpio_data_tx_pa_1.6
#define RESET vII_gpio_data_tx_pa_1.7
```

Der I/O Multiplexer:

1. Steuerleitungen:

```
// GPIO port A bit 1 to pin 12
vos_iomux_define_output(12,IOMUX_OUT_GPIO_PORT_A_1); //WR
// GPIO port A bit 2 to pin 13
vos_iomux_define_output(13,IOMUX_OUT_GPIO_PORT_A_2); //RS
// GPIO port A bit 5 to pin 16
vos_iomux_define_output(16,IOMUX_OUT_GPIO_PORT_A_5); //CS
// GPIO port A bit 6 to pin 63
vos_iomux_define_output(63,IOMUX_OUT_GPIO_PORT_A_6); //RD
// GPIO port A bit 7 to pin 14
vos_iomux_define_output(14,IOMUX_OUT_GPIO_PORT_A_7); //Reset
```

2. Datenbyte

```
// bit 0 to pin 24
vos iomux define output(24,IOMUX OUT GPIO PORT B 0); //BitB0
// bit 1 to pin 25
vos iomux define output(25,IOMUX OUT GPIO PORT B 1); //BitB1
// bit 2 to pin 26
vos iomux define output(26,IOMUX OUT GPIO PORT B 2); //BitB2
// bit 3 to pin 27
vos iomux define output(27,IOMUX OUT GPIO PORT B 3); //BitB3
// bit 4 to pin 28
vos_iomux_define_output(28,IOMUX_OUT_GPIO_PORT_B_4); //BitB4
// bit 5 to pin 29
vos_iomux_define_output(29,IOMUX_OUT_GPIO_PORT_B_5); //BitB5
// bit 6 to pin 31
vos iomux define output(31,IOMUX OUT GPIO PORT B 6); //BitB6
// bit 7 to pin 32
vos_iomux_define_output(32,IOMUX_OUT_GPIO_PORT_B_7); //BitB7
```

Display-Funktionen für alle Displays (2428QVF1H.c):

init_24_28QVF1H_R61505W_8Bit(void);

Diese Funktion initalisiert das Display und ist unbedingt zuerst auszuführen.

Index_out(unsigned short wert);

Sendet einen Index (Register) an den Displaycontroller

Parameter_out(unsigned short wert);

Sendet einen Parameter (Wert) an das Display.

Pixel_out(unsigned char r, unsigned char g, unsigned char b);

Sendet einen Pixel in den Farben r=rot g=grün und b=blau an die momentane Position

RECT(HSA, HEA, VSA, VEA, r, g, b);

Zeichnet ein Rechteck in den Farben r=rot g=grün und b=blau an HSA (Horizontal Startadresse), HEA (Horizontal Endadresse), VSA (Vertikal...) und VEA. Ideal zum löschen des Displays: RECT(0, 239, 0, 319, 0x00,0x00,0x00);

FRAME(unsigned short HEA, unsigned short HSA, unsigned short VEA, unsigned short VSA):

Legt einen Rahmen fest in dem gezeichnet wird.

picture(unsigned short HSA, unsigned short HEA, unsigned short VSA, unsigned short VEA, unsigned short *tile);

Gibt ein Array (tile) als Bild aus. Die Bildparameter müssen dem Rahmen entsprechen.

Draw_ASCII_right(unsigned char font, unsigned short xpo, unsigned short ypo, unsigned char red_bg, unsigned char green_bg, unsigned char blue_bg, unsigned char red_text, unsigned char green_text, unsigned char blue_text, char sign);

Zeichnet ein ASCII-Zeichen des Fonts CourierNew10 (font=2) oder FranklinGothicHeavy18 (font=1) an die Position xpo / ypo. Zusätzlich kann die Hintergrundfarbe xx_bg und die Zeichenfarbe xx_text bestimmt werden. Die Zeichensätze sind nur zu Evaluierungszwecken beigefügt (Copyright beachten).

printstring_r(unsigned char font, unsigned char red_b, unsigned char green_b, unsigned char blue_b, unsigned char red_t, unsigned char green_t, unsigned char blue_t, unsigned short x, unsigned short y, char *string);

Zeichnet einen String des Fonts CourierNew10 (font=2) oder FranklinGothicHeavy18 (font=1) an die Position x / y.

Hintergrundfarbe: xxx_b Zeichenfarbe: xxx_t

printnum_r(unsigned char font, unsigned char red_b,unsigned char green_b,unsigned char blue_b,unsigned char red_t,unsigned char green_t,unsigned char blue_t,unsigned short x,unsigned short y,unsigned long num);

Zeichnet einen dezimalen positiven Integerwert des Fonts CourierNew10 (font=2) oder FranklinGothicHeavy18 (font=1) an die Position x / y.

Hintergrundfarbe: xxx_b Zeichenfarbe: xxx_t

3.2 Ansteuerung Touch

Der I/O Multiplexer:

```
// GPIO port C
// Touch
// bit 0 to pin 43
vos_iomux_define_output(43,IOMUX_OUT_GPIO_PORT_C_0); //X2
// bit 1 to pin 44
vos_iomux_define_output(44,IOMUX_OUT_GPIO_PORT_C_1); //Y1
// bit 2 to pin 45
vos_iomux_define_output(45,IOMUX_OUT_GPIO_PORT_C_2); //X1
// bit 3 to pin 46
vos iomux define output(46,IOMUX OUT GPIO PORT C 3); //Y2
// bit 4 to pin 47
vos iomux define input(47,IOMUX OUT GPIO PORT C 4); //Messeingang 1
vos iocell set config(47,0,0,0,0);
// bit 5 to pin 48
vos iomux define input(48,IOMUX OUT GPIO PORT C 5); //Messeingang 2
vos_iocell_set_config(48,0,0,0,0);
```

Die Funktion

read_Touch(void)

liest den Touch aus und gibt die Werte in den globalen Variablen xpo und ypo zurück. Zudem wird der A/D-Wandler eingelesen und die 8 A/D Ergebnisse in rgb[8] abgelegt.

3.3 Demosoftware

Seiko_TFT1_USB_Touch_EVBVNCLO_Demo2_28

Diese Demo ist für den 2,8" TFT mit Touch-Panel geschrieben.

Sie sollte auch mit dem 2,4" Display mit Touch-Panel laufen, allerdings müssten hierfür die Touch-Analogwerte angepasst werden.

Beiliegende Bitmap-Bilder müssen in der Root eines FAT-USB-Sticks liegen. Der USB-Stick muss in die USB2 Buchse gesteckt werden.

Funktionen:

Im Menü kann man in folgende Unterprogramme wechseln:

1. Taschenrechner

Der Taschenrechner beherrscht die Grundrechenarten, z.B: $8 \times 40 = 320$ $8 \times 3 + 6 = 30$

Einschränkungen: Integerrechnungen und positive Zahlen. Es kann zu einem Aufhängen des Programms kommen (Reset erforderlich).

Weiterentwicklungen dieses einfachen Rechnerdemos sind willkommen und werden gerne weitergegeben.

Verlassen mit Exit

2. Meßgerät

Das Meßgerätedemo liest einen Analogwert von AIN4 ein und stellt die Spannung in mV dar. Im unteren Teil wird der Wert als Kurve dargestellt.

Verlassen der Demo durch Antippen.

3. Uhr

Das Demo zeigt fortlaufende Sekunden und Minuten in einer alten LCD-Uhr an. Ein Druck auf die Reset-Taste der Uhr stellt diese auf Null. Verlassen der Demo durch Drücken der "quit"-Taste.

4. Slide-Show

Dieses Demo zeigt die Bitmaps P01.BMP bis P06.BMP als Slideshow an. Verlassen duch längeres Drücken des Touch.

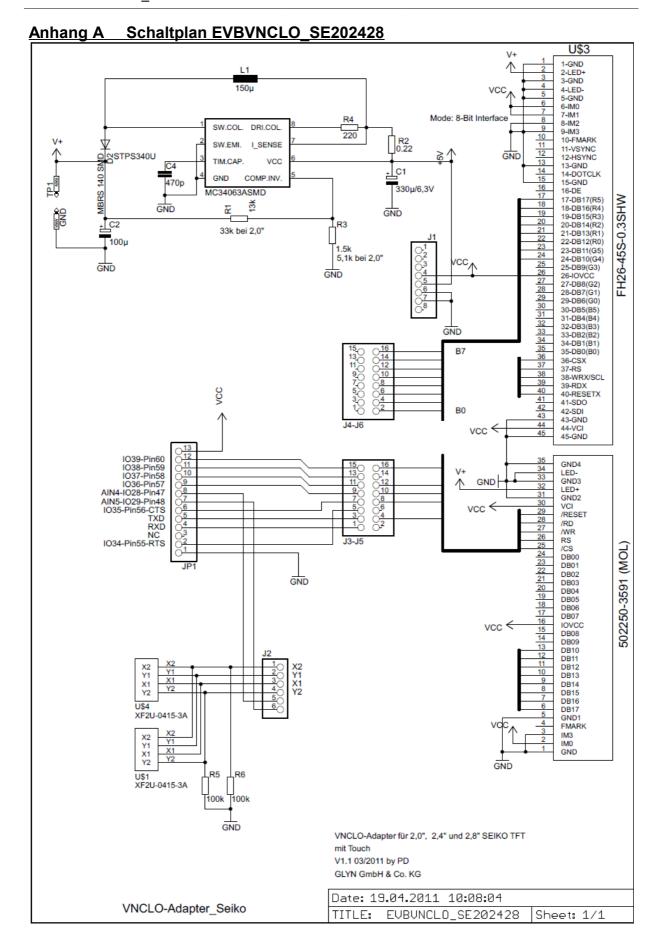
Die Programme dienen nur zum demonstrieren der Möglichkeiten. Der Code ist nicht frei von Fehlern und kann gerne für eigene Projekte weiterverwendet werden.

V1.0 04.05.2011 PDO / GLYN

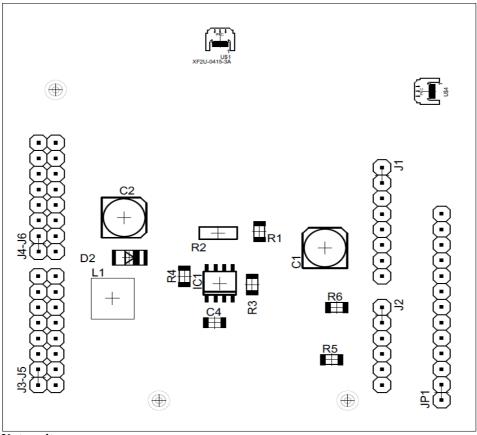
Seiko_TFT1_USB_Touch_EVBVNCLO_Slideshow

Dieses Demo zeigt eine Slideshow mit 10 Bitmap-Files in der Root eines FAT-USB-Sticks.

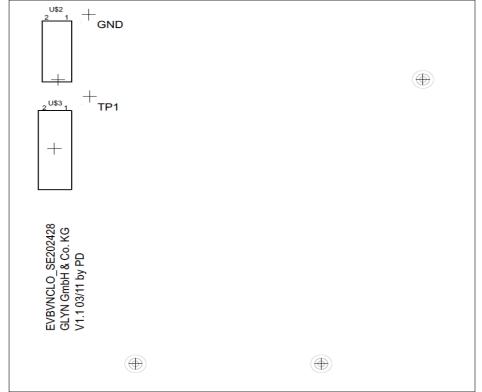
Diese Files haben die Namen P01.BMP bis P10.BMP


Der Touch wird nicht ausgewertet.

Die Auflösung der Bilder beträgt 240 x 320 Pixel und 16,7 Millionen Farben (24 BitsPerPixel).


Die Programme dienen nur zum demonstrieren der Möglichkeiten. Der Code ist nicht frei von Fehlern und kann gerne für eigene Projekte weiterverwendet werden.

V1.0 04.05.2011 PDO / GLYN


Wir verfügen noch über weitere Demos, die sich zur Zeit in der Überarbeitung befinden. Gerne stellen wir diese auf Anfrage zur Verfügung.

Anhang B Bestückungsplan EVBVNCLO_SE202428

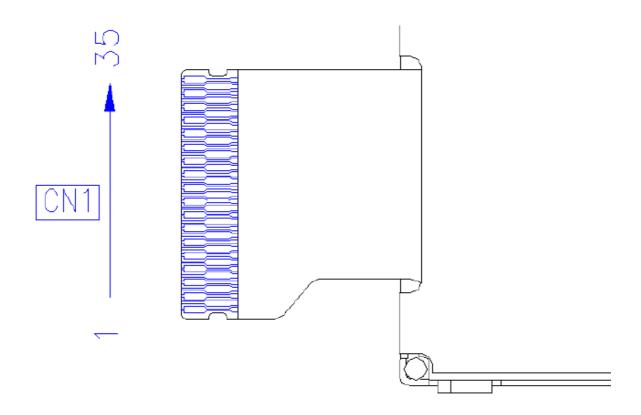
Unterseite

Oberseite

Anhang C Stückliste EVBVNCLO_SE202428

Part	Value	Package	Bemerkung
C1 C2 C4 D2 GND IC1 J1 J2 J3-J5 J4-J6 JP1	330µ/6,3V 100µ 470p MBRS 140 SMD PTR1B2,54 MC34063ASMD	153CLV-0605 153CLV-0605 C1206 MELF-MLL41 B2,54 MC34063A 1X08SMD 1X06SMD 2X08SMD 2X08SMD 1X13SMD	SMD2,54 SMD2,54 SMD2,54 SMD2,54 SMD2,54
L1 R1 R2 R3 R4 R5 R6 TP1 U\$1 U\$2 U\$3 U\$4	150µ 13k 0.22 1.5k 220 100k 100k PTR1B2,54 XF2U-0415-3A 502250-3591 (MOL) FH26-45S-0.3SHW XF2U-0415-3A	PIS2408 R1206 MINI_MELF-02 R1206 R1206 R1206 R1206 B2,54 XF2U-0415-3A	GLYN con-omron XF2U-0415-3A GLYN Molex FFC5022503591

Anhang D Pinbelegung 20QVF1H


CN1

CIVI							
No.	Symbol	Description					
1	GND	GND					
2	LED+	LED power suplly (+)					
3	GND	GND					
4	LED-	LED power suplly (-)					
5	GND	GND					
6	IM0	IM3="GND" IM2="GND" IM1="IOVCC" IM0="GND" then 16bit Interface					
7	IM1	IM3="GND" IM2="GND" IM1="IOVCC" IM0="IOVCC" then 8bit Interface					
8	IM2	IM3="IOVCC" IM2="GND" IM1="IOVCC" IM0="GND" then 18bit Interface					
9	IM3	IM3="IOVCC" IM2="GND" IM1="IOVCC" IM0="IOVCC" then 9bit Interface					
10	FMARK	Frame head pulse signal					
11	VSYNC	Fixed GND or IOVCC					
12	HSYNC	Fixed GND or IOVCC					
13	GND	GND					
14	DOTCLK	Fixed GND or IOVCC					
15	GND	GND					
16	DE	Fixed GND or IOVCC					
17	DB17(R5)						
18	DB16(R4)	16bit Interface					
19	DB15(R3)	RAM Write DB17~DB10,DB8~DB1					
20	DB14(R2)	Instruction set DB17~DB10,DB8~DB1					
21	DB13(R1)	DB9,DB0 fixed IOVCC or GND					
22	DB12(R0)	8bit Interface					
23	DB11(G5)	DB9,DB0 fixed IOVCC or GND 8bit Interface RAM Write DB17~DB10 Instruction set DB17~DB10					
24	DB10(G4)						
25	DB9(G3)	DB9~DB0 fixed IQVCC or GND					
26	IOVCC	18bit Interface					
27	DB8(G2)	RAM Write DB17~DB0					
28	DB7(G1)	Instruction set DB17~DB10,DB8~DB1					
29	DB6(G0)	9bit Interface RAM Write DB17~DB9					
30	DB5(B5)	Instruction set DB17~DB9					
31	DB4(B4)	DB8~DB0 fixed IOVCC or GND					
32	DB3(B3)	DB0 DB0 lixed loved of GNB					
33	DB2(B2)	1					
34	DB1(B1)	IOVCC: Logic power supply (1.65V~3.3V)					
35	DB0(B0)						
36		Chip select :Low active					
37	RS	Display data/Command selection pin RS="H": Display data. RS="L": Command data.					
38	WRX/SCL	Write: Low active					
39	RDX	Read: Low active					
40	RESETX	RESET: Low active					
41	SDO	Open Open					
42	SDI	Fixed GND or IOVCC					
43	GND	GND					
44	VCI	Analog power supply (2.5V~3.3V)					
45	GND	GND					
40	GND	OND					

Anhang E Pinbelegung 24QVF1H/J und 28QVF1H/J

CN1

CN1		
No.	Symbol	Description
1	GND	GND
2	IMO	IM3="GND" IM0="GND" then 16bit Interface IM3="GND" IM0="IOVCC" then 8bit Interface
3	IM3	IM3="IOVCC" IM0="GND" then 18bit Interface IM3="IOVCC" IM0="IOVCC" then 9bit Interface
4	FMARK	Frame head pulse signal
5	GND	GND
6	DB17	
7	DB16	16bit Interface
8	DB15	RAM Write DB17~DB10,DB8~DB1
9	DB14	Instruction set DB17~DB10,DB8~DB1
10	DB13	DB9,DB0 fixed IOVCC or GND
11	DB12	8bit Interface
12	DB11	RAM Write DB17~DB10
13	DB10	Instruction set DB17~DB10
14	DB9	DB9~DB0 fixed IOVCC or GND
15	DB8	18bit Interface
16	IOVCC	RAM Write DB17~DB0
17	DB7	Instruction set DB17~DB10,DB8~DB1
18	DB6	9bit Interface
19	DB5	RAM Write DB17~DB9
20	DB4	Instruction set DB17~DB10
21	DB3	DB8~DB0 fixed IOVCC or GND
22	DB2	
23	DB1	IOVCC:Logic power supply (1.65V~3.3V)
24	DB0	
25	/CS	Chip select :Low active
26	RS	Display data/Command selection pin RS="H": Display data. RS="L": Command data.
27	WR	Write: Low active
28	/RD	Read: Low active
29	/RESET	RESET: Low active
30	VCI	Analog power supply (2.5V~3.3V)
31	GND	GND
32	LED+	LED power suplly (+)
33	GND	GND
34	LED-	LED power suplly (-)
35	GND	GND
		1

Pinbelegung Touch-Panel:

CN2

No.	Symbol	Description
1	Y2	Top electrode – differential analog
2	X1	Right electrode – differential analog
3	Y1	Bottom electrode – differential analog
4	X2	Left electrode – differential analog