

CO2 Sensor Module CDM7160-C00

Communication Specifications

1

■ Contents ■	page
1. Overview	3
2. Specifications	
2-1 Absolute maximum ratings	- 4
2-2 Recommended operating conditions	4
2-3 Electrical characteristics	4
3. Connection Methods	
3-1 UART communication	5
3-2 I2C communication	- 5
4. Description of Basic Operations	
4-1 Reset function	6
4-2 Operation modes	6
5. UART Communication - Description of Operation	
5-1 Overview	7
5-2 Communication conditions	- 7
5-3 Overview of Modbus protocol	- 7
5-4 Configuration of message	
5-5 Function codes	8
5-6 Detail of messages	9
6. I2C Communication - Description of Operation	
6-1 Overview	· 15
6-2 Data transfer	15
6-3 Data change	15
6-4 Start and stop conditions	15
6-5 Acknowledge	16
6-6 Slave address	16
6-7 WRITE instruction	17
6-8 READ instruction	18
7. List of Registers (Applicable to Both UART and I2C)	
7-1 Register memory map	19
7-2 Detailed description of each register	- 21
Appendix 1 (Configuration of Modbus Registers)	- 27
Appendix 2 (Specifications of I2C Bus Interface)	29

1. Overview

The CDM7160 can control communication with the external controller and the I2C bus or the UART interface and obtain CO2 concentration. Use the MSEL pin to select the I2C bus or UART.

(1) MSEL = L

I2C bus interface is used for communication with the controller.

(2) MSEL = H

UART interface is used for communication with the controller.

*The MSEL pin is a pull-up input. If this pin is not connected, the UART interface is used.

2. Specifications

2-1 Absolute maximum ratings

Vss = 0 V

Item	Sign	Min.	Max.	Unit
Source voltage (Vdd)	V;+	-0.3	+6.5	V
Input voltage	VIN	-0.3	(V+)+0.3	V
Input current	IIN	-	±10	mA
Storage temperature	TST	-30	+70	°C

(Note 1) If one or more of these values are exceeded during use, the module could be damaged. In such case, normal operation is not guaranteed.

2-2 Recommended operating conditions

Vss = 0 V

Item	Remark	Sign	Min.	Тур.	Max.	Unit
Operation temperature		Та	0		+50	°C
Source voltage		Vdd	4.75	5.0	5.25	V

2-3 Electrical characteristics

Unless otherwise specified, the following conditions are used:

Vdd = $4.75V \sim 5.25V$, Temperature range = $0^{\circ}C \sim 50^{\circ}C$

DC characteristics

Item	Sign	Pin	Condition	Min.	Тур.	Max.	Unit
High-level input voltage 1	VIH1	MSEL CAL		80%Vdd			V
Low-level input voltage 1	VIL1	CAD0 CAD1				20%Vdd	V
Input current	IIN	RX		-125		+125	nA
High-level input voltage 2	VIH2	SDA		70%Vdd			V
Low-level input voltage 2	VIL2	SCL				30%Vdd	V
Low-level output voltage 1	VOL1	UART_R/T ALARM	(Note 2)			0.6	V
High-level output voltage	VOH	PWM TX	(Note 3)	Vdd-0.7			V
Low-level output voltage 2	VOL2	SDA	(Note 2)			0.6	V
	IDD1		Power down mode		-	-	μA
Power consumption	IDD2	VDD	Continuous operation mode 1		8	60	mA

(Note 2) IOL = 8 mA, Vdd = 5V

(Note 3) IOH = 3.5 mA, Vdd = 5V

3. Connection Methods

3-1 UART communication

	CDM7160				External controller
Pin No.	Pin name	Function	Status		Pin/status
1	VDD	Power supply	DC +5V		VDD
2	GND	_	-		GND
3	ALARM	Alert	output		Connect this pin as needed (digital output)
4	PWM	Concentration display (level)	output		Connect this pin as needed
5	CAD0	I2C slave address (least significant)	input	N.C.	
6	MSEL	Select I2C or UART	input	N.C.	
7	CAL	Calibration	input	N.C.	
8	BUSY	Busy signal	output		Connect this pin as needed (digital output)
9	Tx/SDA	Тх	output	►	Rx
10	Rx/SCL	Rx	input	◀	Tx

Figure 1 - UART Communication Connection

3-2 I2C communication

CDM7160					External controller
Pin No.	Pin name	Function	Status		Pin/status
1	VDD	Power supply	DC +5V		VDD
2	GND	_	-		GND
3	ALARM	Alert	output		Connect this pin as needed (digital output)
4	PWM	Concentration display (level)	output		Connect this pin as needed
5	CAD0	I2C slave address (least significant)	input	-	Connect this pin as needed (digital input)
6	MSEL	Select I2C or UART	input		Low level
7	CAL	Calibration	input	N.C.	
8	BUSY	Busy signal	output		Digital output
9	Tx/SDA	I2C data signal SDA	input/output	↓	SDA
10	Rx/SCL	I2C clock signal SCL	input	 ←───	SCL

Figure 2 - I2C Communication Connection

Operation sequence from the viewpoint of the external controller (master)

- (1) Send the start condition
- (2) Send the slave address
- (3) Receive acknowledgement (abbreviated as Ack.) from the CDM7160
- (4) Send the register address to be accessed
- (5) Receive acknowledgement (abbreviated as Ack.) from the CDM7160
- (6) Repeat steps (4) and (5)
- (7) Send the stop bit

4. Description of Basic Operations

4-1 Reset function (applicable to both UART and I2C)

The CDM7160 is reset when the power is turned on. The CDM7160 also has a soft reset function. <u>Soft reset</u>

The CDM7160 can be reset by writing 1 to the REST bit in the RST register through the UART interface. When reset is complete, the REST bit automatically returns to 0.

4-2 Operation modes (applicable to both UART and I2C)

CDM7160 has the following two operation modes:

- (1) Power down mode
- (2) Continuous operation mode 1

The corresponding operation mode can be activated by setting a value in the CTL register.

(1) Power down mode

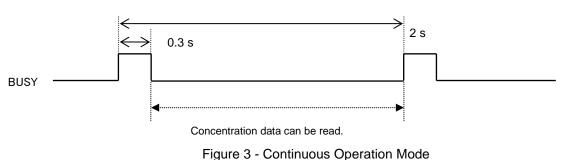
The master clock stops and all analog circuits are turned off.

(2) Continuous operation mode 1

When continuous operation mode 1 is set, analog circuits start operating. The following series of operations will commence:

- A) First, measurement of CO2 concentration starts after a determined setup time. At this time, 1 is set to the BUSY bit in the ST1 register and H is set to the BUSY pin.
- B) The first measurement of CO2 concentration ends after about 0.3 sec. At this time, 0 is set to the BUSY bit in the ST1 register and L is set to the BUSY pin.

Immediately thereafter, the analog circuit stops and enters into low power consumption mode.


- C) After 1.7 seconds, the analog circuits operate again and automatically start measuring CO2 concentration. At this time, 1 is set to the BUSY bit in the ST1 register and H is set to the BUSY pin.
- D) This measurement of CO2 concentration ends after about 0.3 seconds and 0 is set to the BUSY bit in the ST1 register and L is set to the BUSY pin. CO2 concentration data is now ready to be read. External devices can detect this change and read the concentration data from the DAL and DAH registers.

Immediately thereafter, the analog circuit stops and enters into low power consumption mode. After this, repeat step C) -- measurement is done again.

Measurement is repeated until operation mode is changed by overwriting the value in the CTL register.

*To change the alarm and other settings, switch to power down mode, change set conditions, and move back to continuous operation mode.

The operation sequence is shown in the figure below:

Continuous operation mode 1

5. UART Communication - Description of Operation

5-1 Overview

When H is set on the MSEL pin, the CDM7160 uses UART communication mode. As the UART interface is used for communication with the external controller, the TX/SDA pin and the RX/SCL pin operate as TX and RX, respectively, with the communication protocol based on the Modbus protocol. For details on Modbus specifications, refer to www.modbus.org.

5-2 Communication conditions

UART communication by the CDM7160 supports only the following limited specifications:

(1) Only the RTU mode to send 1-byte (8-bit) data is supported. ASCII mode is not supported.

(2) Supported communication speed is 9600 bps only.

(3) Both for transmission and reception, no parity bit is used, the start bit is 1 bit, and the stop bit is 1 bit. The logic of the start bit is L while the logic of the stop bit is H.

(Reference) A 10-bit data string used to send 1-byte data is defined as one character. The time to send one character is about 1.04 ms at 9600 bps.

5-3 Overview of Modbus protocol

According to Modbus protocol, the master always sends messages while the slave responds to them. The controller is the master device while the CDM7160 is the slave device.

The transmission procedure is as follows:

(1) The master sends the command message to the slave.

(2) The slave checks if the device address contained in the received message matches its local station.

(3) When the device address matches, the slave performs processing according to the function code and returns a response message.

(4) When the device address does not match, the slave discards the received message and waits for the next message.

3.5 or more space characters are required before and after each message.

1.5 or less space characters are required between characters in the message.

5-4 Configuration of message

The command message from the master and the response message from the slave consist of four sections: device address, function code, data section, and error check code, which are sent in this order. Each of these sections is described below:

1. Device address (1 byte)

Number to identify the slave. For the time being, only FEH, which corresponds to all addresses, is supported.

2. Function code (1 byte)

Code to specify the function to be executed by the slave. For details, refer to "5-5 Function codes."

3. Data section (2 to 17 bytes)

Data required to complete the function code. The configuration of the data section differs depending on the function code. For details, refer to "5-6 Details of messages."

4. Error check code (2 bytes)

Code to detect errors in the message during signal transmission.

CRC16-IBM (Rightward transmission, Initial value: 0xFFFF, Generating polynomial value: 0xA001) is used in the RTU mode for Modbus protocol. The calculation range is from the start of the message (device address) to the end of the data section.

The slave calculates the CRC of the received message and does not respond if it does not match the received CRC code.

Device address	Function code	Data section	Error check code (CRC-16)
1 byte	1 byte	2 to 17 bytes	2 bytes

Configuration of Message

5-5 Function codes

The CDM7160 only supports the six types of function codes shown in the table below. The length of the data section differs depending on the function code.

Param. No.		Length of	f data section		
Function code	Function	Target	Command	Response (at normal time)	
03H	Read	Holding register	4 bytes	3 to 17 bytes	Checks the CAL execution status with UART
04H	Read	Input register	4 bytes	3 to 17 bytes	Reads CO2 concentration data with UART
06H	Write	Holding register	4 bytes	4 bytes	Executes CAL with UART
44H	Read	CO2 concentration data	3 bytes	2 to 17 bytes	Dedicated to reading CO2 concentration data with UART
64H	Write	Register for CDM7160	2 bytes	2 bytes	Writes the register value with UART
65H	Read	Register for CDM7160	2 bytes	2 to 17 bytes	Reads the register value with UART

Function Codes

5-6 Details of messages

This section individually describes each function code.

Reading from the holding register [Function code: 03H]

Structure of command message

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		03H	
Deed start address	High-order	00H	
Read start address	Low-order	00H	
	High-order	00H	
Number of read words	Low-order	01H	Up to 8 words (16 bytes)
	High-order	90H	
CRC data	Low-order	05H	

Structure of response message

At normal time

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		03H	
Number of read bytes		02H	Number of words ×2
First read data	High-order	00H	Contents at address 0
First read data	Low-order	20H	Acknowledgment register
CRC data		ADH	
	High-order	88H	

When read start address > 001FH or (Read start address + Number of read words) > 0020H

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code	Function code		
Exception code		02H	Illegal Data Address
Low-order		F0H	
CRC data	High-order	C1H	

When the message length excluding CRC is not six bytes or when the number of read words is zero or larger than eight

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		83H	
Exception code	Exception code		Illegal Data Value
Low-order		31H	
CRC data	High-order	01H	

Reading from the input register [Function code: 04H]

Structure of command message

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		04H	
Deed start address	High-order	00H	
Read start address	Low-order	00H	
Number of read words	High-order	00H	
Number of read words	Low-order	04H	Up to 8 words (16 bytes)
	Low-order	E5H	
CRC data	High-order	C6H	

Structure of response message

At normal time			
Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		04H	
Number of read bytes		08H	Number of words ×2
First road data	High-order	00H	Contents at address 0
First read data	Low-order	00H	Meter Status
Concerned wood date	High-order	00H	Contents at address 1
Second read data	Low-order	00H	Alarm Status
Third read data	High-order	00H	Contents at address 2
Third Tead data	Low-order	00H	Output Status
Fourth road data	High-order	01H	Contents at address 3
Fourth read data	Low-order	90H	CO2concentration
CRC data	Low-order	16H	
	High-order	E6H	

When read start address > 001FH or (Read start address + Number of read words) > 0020H

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		84H	
Exception code		02H	Illegal Data Address
Low-order		F2H	
CRC data High-order		F1H	

When the message length excluding CRC is not six bytes or when the number of read words is zero or larger than eight

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		84H	
Exception code		03H	Illegal Data Value
Low-order		33H	
CRC data High-order		31H	

Writing to the holding register [Function code: 06H]

Structure of command message

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		06H	
Write start address	High-order	00H	Writes 0000H to address 0
Write start address	Low-order	00H	
	High-order	00H	
Write data	Low-order	00H	
CDC data	Low-order	9DH	
CRC data	High-order	C5H	

Structure of response message

At normal time

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		06H	
High-c		00H	
Write address	Low-order	00H	
	High-order	00H	Returns written data
Write data	Low-order	00H	
	Low-order	9DH	
CRC data	High-order	C5H	

When write address > 1FH

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		86H	
Exception code		02H	Illegal Data Address
Low-order		F3H	
CRC data	High-order	91H	

When the message length excluding CRC is not six bytes

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		86H	
Exception code		03H	Illegal Data Value
CRC data Low-order High-order		32H	
		51H	

Reading CO2 concentration data [Function code: 44H]

Structure of command message

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		44H	
High-order		00H	
Read start address	Low-order	08H	
Number of read bytes		02H	
Low-order		9FH	
	CRC data High-order		

*Only the message in the above command message example can be used.

Structure of response message

At normal time

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		44H	
Number of read bytes		02H	
	High-order	01H	Contents at address 3 (CO2
CO2 concentration data	Low-order	90H	concentration) is indirectly read
Low-order		B9H	
CRC data	High-order	18H	

When read start address > 03FFH or (Read start address + Number of read words) > 0400H

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		A4H	
Exception code		02H	Illegal Data Address
Low-order		EBH	
CRC data High-order		31H	

When the message length excluding CRC is not five bytes or when the number of read bytes is 0

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		A4H	
Exception code		03H	Illegal Data Value
Low-order		2AH	
CRC data High-order		F1H	

Writing to the register for CDM7160 [Function code: 64H]

Structure of command message

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		64H	CDM7160 unique code
Write address	Write address		
Write data		06H	Writes to address 1
			CTL: Control
	Low-order	F1H	
CRC data	High-order	81H	

Structure of response message

At normal time

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		64H	CDM7160 unique code
Write address		01H	
Write data		06H	Returns written data
CRC data	Low-order	F1H	
CRC data	High-order	81H	

When write address > 0FH

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		E4H	
Exception code		02H	Illegal Data Address
CRC data	Low-order	DAH	
	High-order	F1H	

When the message length excluding CRC is not four bytes

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		E4H	
Exception code		03H	Illegal Data Value
	Low-order	1BH	
CRC data	High-order	31H	

The writable address range is from 00H to 0FH.

Reading from the register for CDM7160 [Function code: 65H]

Structure of command message

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		65H	CDM7160 unique code
Read start address	Read start address		
Number of read bytes		05H	Up to 16 bytes
	Low-order	E1H	
CRC data	High-order	D0H	

Structure of response message

At normal time			
Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		65H	CDM7160 unique code
Number of read bytes		05H	
First read data		00H	RST: Software reset
Second read data	Second read data		CTL: Control
Third read data		01H	ST1: Status 1
Fourth read data		90H	DAL: Low-order CO2
			concentration data
Fifth read data		01H	DAH: High-order CO2
			concentration data
CRC data	Low-order	07H	
	High-order	18H	

When write address > 0FH

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		E5H	
Exception code		02H	Illegal Data Address
	Low-order	DBH	
CRC data	High-order	61H	

When the message length excluding CRC is not four bytes or when (Read start address + Number of read bytes) > 0FH

Message structure (byte)		Example	Remark
Device address		FEH	All devices
Function code		E5H	
Exception code		03H	Illegal Data Value
CRC data	Low-order	1AH	
	High-order	A1H	

The readable address range is from 00H to 0FH.

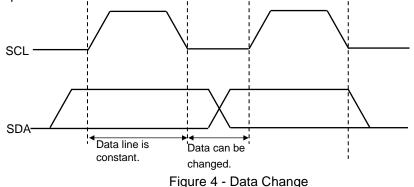
6. I2C Communication - Description of Operation

6-1 Overview

When the MSEL pin is set to L, CDM7160 operates with I2C communication. As the I2C bus interface is used for communication with the external controller, the TX/SDA pin and the RX/SCL pin operate as SDA and SCL, respectively. The UART_R/T/BUSY pin operates as the BUSY signal output pin.

For the I2C bus interface in the CDM7160, standard mode (up to 100 kHz) or high-speed mode (up to 400 kHz) can be selected. (For details on the I2C bus interface, refer to Appendix 2, "Specifications of I2C Bus Interface" at the end of this document.)

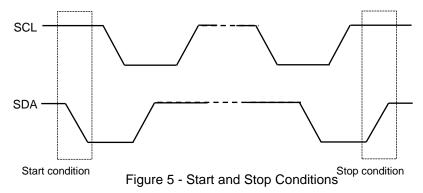
6-2 Data transfer


The start condition must be first input to access the CDM7160 via the bus.

Next, the 1-byte slave address containing the device address is sent. At this time, the CDM7160 compares the received slave address with its own slave address. When these addresses match, the CDM7160 generates an acknowledgement and executes the read or write instruction. To end the instruction, input the stop condition.

6-3 Data change

SDA line data can be changed while the clock on the SCL line is at Low. While the clock signal on the SCL line is High, the status of the SDA line must be constant. (Data on the SDA line can be changed only while the clock signal on the SCL line is Low.)


While the SCL line is High, the status of data on the SDA line is changed only when the start or stop condition is input.

6-4 Start and stop conditions

If the SDA line is changed from High to Low while the SCL line is High, the start condition is generated. All data transfer starts with the start condition.

If the SDA line is changed from Low to High while the SCL line is High, the stop condition is generated. All data transfer ends with the stop condition.

6-5 Acknowledgement

The device that sends data opens the SDA line after sending 1-byte data (High status). The device that receives the data sets Low to the SDA line at the next clock. This operation is called acknowledgement. Acknowledgement allows checking if data transfer has been successfully completed.

The CDM7160 generates acknowledgement after receiving the start condition and the slave address. When executing the WRITE instruction, CDM7160 generates acknowledgement when receiving each byte. When executing the READ instruction, CDM7160 generates acknowledgement and sends data stored at the specified address. The CDM7160 then opens the SDA line and monitors it. If the master device generates acknowledgement instead of the stop condition, the CDM7160 sends the 8-bit data stored at the next address. If acknowledgement is not generated, the CDM7160 stops sending data.

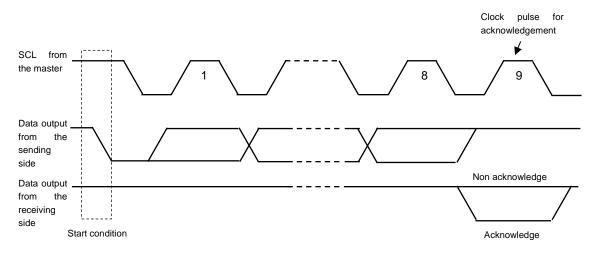


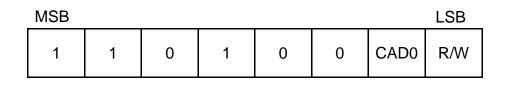
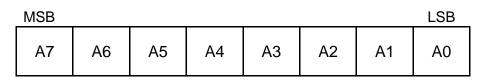
Figure 6 - Generation of Acknowledgement

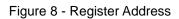
6-6 Slave address

The first byte containing the slave address is input after the start condition. The slave address is used to select the device to be accessed from the devices on the bus.

The slave address consists of the upper 7 bits. The upper 6 bits of the slave address are fixed to 110100 in the CDM7160. The 7th bit is the address bit to select the device to be accessed and is set by the CAD0 pin. When the slave address is input, the device whose address matches generates acknowledgement and then executes the instruction. The eighth bit (the least significant bit) in the first byte is the R/W bit. When the R/W bit is 1, the READ instruction is executed. When the R/W bit is 0, the WRITE instruction is

executed.

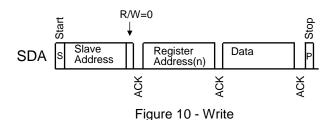

Figure 7 - Slave Address

6-7 WRITE instruction <applicable to the register and EEPROM>

When 0 is set to the R/W bit, the CDM7160 executes the write operation.

During the write operation, the CDM7160 receives the start condition and the first byte (slave address), generates acknowledgement, and then receives the second byte. The second byte specifies the address of the internal control register in the MSB first format.

After receiving the second byte (register address), the CDM7160 generates acknowledgement and then receives the third byte.


The third byte represents control data. Control data consists of 8 bits in the MSB first format.

After receiving control data, the CDM7160 generates acknowledgement. Data transfer always ends with the stop condition generated by the master.

MSB	3 LSB								
D7	D6	D5	D4	D3	D2	D1	D0		

Figure 9 - Control Data

The CDM7160 does not support sequential write. The CDM7160 writes data under the stop condition. If the specified address is read-only, data is not written.

If the specified address points to EEPROM, the CDM7160 generates acknowledgement after the slave address is sent and after the register address is sent.

If the CDM7160 receives data afterward, clock stretch occurs to ensure the EEPROM write time (Note 1). When clock stretch ends and SCL is released, the master device generates the stop condition and the write operation ends.

Note 1) The CDM7160 delays the processing at the master device to ensure the EEPROM write time by forcibly setting L to SCL.

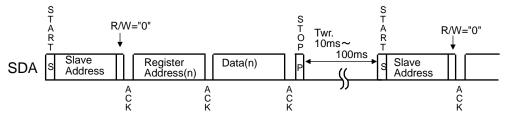


Figure 11 - Write (EEPROM)

6-8 READ instruction <applicable to the register and EEPROM>

When 1 is set to the R/W bit, the CDM7160 executes the read operation.

If the master device generates acknowledgement instead of the stop condition after the CDM7160 sends the data from the specified address, data can be read from the next address.

Once the address is counted up to 0FH in the range between 00H and 0FH, the next address returns to 00H.

(1) Reading data from the current address

The CDM7160 has an internal address counter. During the operation to read data from the current address, data is read from the address specified at this counter.

The internal address counter retains the address next to the last accessed address.

For example, if the last accessed address for the READ instruction is n, data is read from address n+1 when the instruction to read data from the current address is executed.

When reading data from the current address, the CDM7160 receives the slave address for the READ instruction (R/W bit = 1) and generates acknowledgement. Then, the CDM7160 starts transferring data specified at the internal address counter at the next clock and increments the internal address counter by 1. If the master device generates the stop condition instead of acknowledgement after the CDM7160 sends 1-byte data, the read operation ends.

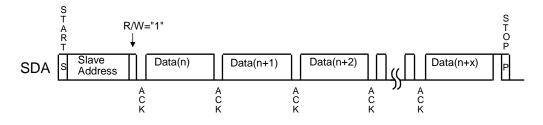


Figure 12 - Reading Data from the Current Address

(2) Random read

The random read operation reads data from an arbitrary address.

For random read, the WRITE instruction must be executed as dummy before the slave address for the READ instruction (R/W bit = 1) is sent. During the random read operation, the start condition is first generated and then the slave address for the WRITE instruction and the read address are sent. In response to this address transmission, the CDM7160 generates acknowledgement and then the master device sends the start condition and the slave address for the READ instruction (R/W bit = 1) again. The CDM7160 generates acknowledgement in response to this transmission of slave address. After that, the CDM7160 sends data from the specified address and increments the internal address counter by 1.

If the master device generates the stop condition instead of acknowledgement after sending data, the read operation ends.

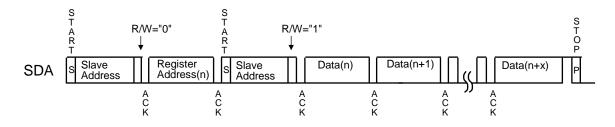


Figure 13 - Random Read

7. List of Registers (Applicable to Both UART and I2C)

7-1 Register memory map

The CDM7160 has the registers and EEPROM with the addresses shown in Table 1. Each address consists of 8-bit data.

Address	Name	REG/EEP*	Brief description	Description		
00H	RST	REG	Soft reset	Resets the module		
01H	CTL	EEP	Operation mode	Sets the operation mode		
02H	ST1	REG	Status register	Monitors the operation state. Read-only		
03H	DAL	REG	Lower CO2 concentration data	Read-only		
04H	DAH	REG	Upper CO2 concentration data	Read-only		
05H	_		Reserved	Read/write not allowed		
06H	_		Reserved	Read/write not allowed		
07H	_		Reserved	Read/write not allowed		
08H	_		Reserved	Read/write not allowed		
09H	HPA	EEP	Atmospheric pressure data	Sets the atmospheric pressure value (hPa)		
0AH	HIT	EEP	Altitude data	Sets the altitude value (m)		
0BH	_		Reserved	Read/write not allowed		
0CH	ALHI	EEP	Upper limit concentration for the alarm signal	Sets the upper limit concentration for the alarm signal		
0DH	ALLO	EEP	Lower limit concentration for the alarm signal	Sets the lower limit concentration for the alarm signal		
0EH	CAL	REG	User calibration	User calibration with I2C		
0FH	FUNC	EEP	Control of each type of function	Sets correction for PWM output, atmospheric pressure and altitude		
10H	ERROR	REG	Self-diagnosis (error output)	Read-only		
11H	_		Reserved	Read/write not allowed		
12H	AJCON	EEP	CO2 concentration for user calibration	Sets the CO2 concentration.		
13H	LTAC	EEP	Target concentration for LTA	Sets the target concentration for LTA		
14H	LTAP	EEP	LTA period	Sets the unit of LTA period		
D0H DBH	SNO0 SNO11	EEP	Serial number (12Byte)	Read-only		
DCH ECH	FW0 FW19	EEP	Free word (20Byte)			

Table 1 = Register Table

*REG: The data in the register is initialized when the power is turned off.

EEP: The data in the register is retained even when the power is turned off.

Register map

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	RST	-	-	-	-	-	-	-	REST
01H	CTL	-	-	-	-	-	CTL2	CTL1	CTL0
02H	ST1	BUSY	ALARM	-	-	-	-	CAD0	MSEL
03H	DAL	D7	D6	D5	D4	D3	D2	D1	D0
04H	DAH	-	D14	D13	D12	D11	D10	D9	D8
05H	_	-	-	-	-	-	-	-	-
06H	-	-	-	-	-	-	-	-	-
07H	_	-	-	-	-	-	-	-	-
08H	-	-	-	-	-	-	-	-	-
09H	HPA	Hpa7	Hpa6	Hpa5	Hpa4	Hpa3	Hpa2	Hpa1	Hpa0
0AH	HIT	Hit7	Hit6	Hit5	Hit4	Hit3	Hit2	Hit1	Hit0
0BH	-	-	-	-	-	-	-	-	-
0CH	ALHI	Alhi7	Alhi6	Alhi5	Alhi4	Alhi3	Alhi2	Alhi1	Alhi0
0DH	ALLO	Allo7	Allo6	Allo5	Allo4	Allo3	Allo2	Allo1	Allo0
0EH	CAL	-	-	-	-	-	-	Zero-A	Air-A
0FH	FUNC	-	-	LTA1E	LTA2E	PWMR	HPAE	-	PWME
10H	ERROR	-	-	-	-	-	-	-	Error0
12H	AJCON	Ajcon7	Ajcon6	Ajcon5	Ajcon4	Ajcon3	Ajcon2	Ajcon1	Ajcon0
13H	LTAC	Ltac7	Ltac6	Ltac5	Ltac4	Ltac3	Ltac2	Ltac1	Ltac0
14H	LTAP	LtapU1	LtapU0	Ltap5	Ltap4	Ltap3	Ltap2	Ltap1	Ltap0
D0H	SNO0	Serial num	ber area (1	2Byte).					
		The ser	ial number	(for 12 chai	racters) is v	vritten in AS	SCII code. ·		
DBH	SNO11	For deta	ails, please	refer to pag	ge 26				
DCH	FW0	Free word	area (20By	te).					
		The CD	M7160 doe	s not suppo	ort sequent	ial write. No	eed to write	1byte at a	time
ECH	FW19	For deta	ails, please	refer to pag	ge 17				

Table 2 - Register Map

Note) Do not write or read data to or from an address other than those above.

7-2 Detailed register descriptions

RST: Soft reset

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0
Write/read									
00H	RST	-	-	-	-	-	-	-	REST

REST: Reset

0: Normal status

1: Reset

The CDM7160 is reset when 1 is written to this bit. When reset ends, this bit automatically returns to 0.

CTL: Control

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0		
Write/read	Write/read EEPROM										
01H	CTL	-	-	-	-	-	CTL2	CTL1	CTL0		
	Reset	0	0	0	0	0	1	1	0		

CTL<2:0>: Specification of operation mode

Set valu	le		Operation mode
D2	D1	D0	
0	0	0	Power down mode
1	1	0	Continuous operation mode

*Note: Do not write a value other than 00H or 06H to the CTL register.

ST1: Status 1

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0			
Read-only	Read-only register											
02H	ST1	BUSY	ALARM	-	-	-	-	CAD0	MSEL			
Reset			0	0	0	0	0	0	0			

BUSY: Busy

0: Data can be read.

1: Busy status

The BUSY bit becomes 1 if data cannot be read--for example, during ADC conversion or operation of read data. The controller reads data after confirming that this bit changed from 1 to 0. The status of this bit is output to the BUSY pin as well.

ALARM: Alarm

0: The CO2 concentration is below 10 times the CO2LO value.

1: The CO2 concentration is above 10 times the CO2HI value.

The ALARM bit notifies that the CO2 concentration exceeds the preset value.

The status of this bit is output to the ALARM pin as well.

CAD0, MSEL:

Can monitor the status of the CAD0 and MSEL pins.

*If there is no connection to the CAD0 pin, the CAD0 is internally pulled up to High status.

DAL to DAH: CO2 concentration data

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0	
Read-only	Read-only register									
03H	DAL	D7	D6	D5	D4	D3	D2	D1	D0	
04H	DAH	-	D14	D13	D12	D11	D10	D9	D8	
	Reset	0	0	0	0	0	0	0	0	

CO2 concentration data is output to D0 to D14. Concentration data is stored in little endian. The data range is from 0 to 10000 in decimal notation.

CO2 conce	CO2 concentration data								
Binary	data								
X010 0111 0001 0000	2710	10000	10000ppm						
X000 0000 0000 0000	0000	0	0ppm						

If the concentration is 400 ppm, DAL = 90H and DAH = 01H.

ALHI: ALARM high threshold data

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0		
Write/read	Write/read EEPROM										
0CH	ALHI	Alhi7	Alhi6	Alhi5	Alhi4	Alhi3	Alhi2	Alhi1	Alhi0		
At	shipment	0	1	1	0	0	1	0	0		

This register sets the CO2 concentration at which the ALARM bit changes from 0 to 1. When the CO2 concentration data exceeds 10 times the value written to this register, the ALARM bit changes to 1. If ALHI = 64H, the ALARM bit changes to 1 when the CO2 concentration exceeds 1000 ppm.

ALLO: ALARM low threshold data

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0		
Write/read	Write/read EEPROM										
0DH	ALLO	Allo7	Allo6	Allo5	Allo4	Allo3	Allo2	Allo1	Allo0		
At	shipment	0	1	0	1	1	1	0	0		

This register sets the CO2 concentration at which the ALARM bit changes from 1 to 0. When the CO2 concentration data drops below 10 times the value written to this register, the ALARM bit changes to 0. If ALLO = 5AH, the ALARM bit changes to 0 when the CO2 concentration drops below 900 ppm. You can add hysteresis by setting a value larger than ALLO to ALHI. Set a value equal to or larger than ALLO to ALHI.

HPA: hPa (atmospheric pressure)

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0		
Write/read	Write/read EEPROM										
09H	HPA	Hpa7	Hpa6	Hpa5	Hpa4	Hpa3	Hpa2	Hpa1	Hpa0		
At	shipment	1	1	0	1	0	1	0	1		

Write the atmospheric pressure data to correct atmospheric pressure when calculating CO2 concentration.

The atmospheric pressure data is expressed as follows:

Atmospheric pressure (hPa) = HPA + 800

When HPA = D5H, the atmospheric pressure is 1013 hPa.

HP	A data		Atmospheric
Binary	pressure		
1111 1111	FF	255	1055 hPa
I		_	
0000 0000	00	0	800 hPa

HIT: Height (altitude)

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0		
Write/read	Write/read EEPROM										
0AH	HIT	Hit7	Hit6	Hit5	Hit4	Hit3	Hit2	Hit1	Hit0		
At	shipment	0	0	0	0	0	0	0			

Write altitude data to correct the atmospheric pressure when calculating the CO2 concentration. The altitude data is expressed as follows:

Altitude (m) = HIT \times 10

HI	T data		Altitudo
Binary	Hexadecimal	Decimal	Altitude
1111 1111	FF	255	2550 m
			I
0000 0000	00	0	0 m

Note: When writing altitude data, HIT

- When writing the actual altitude (m) value, write the atmospheric pressure at 0 m above sea level to the atmospheric pressure data, HPA.

- When the actual atmospheric pressure (hPa) value has been written to HPA: 0(m) (at the time of shipment)

(Reference): The atmospheric pressure correction value by altitude is simplified to be -1.1 hPa per 10m.

When using the atmospheric pressure and altitude correction functions, set 1 (enabled) to the HAPE bit in the FUNC register (address: 0FH).

CAL: User calibration

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0		
Write-only	Write-only register										
0EH	CAL	-	-	-	-	-	-	Zero-A	Air-A		
Reset 0			0	0	0	0	0	0	0		

Air-A: Air Adjustment is executed when the Air-A bit is set to 1 under normal clean atmosphere or to the CO2 concentration that is pre-set at the register address (12H). After execution of Air Adjustment, the measured concentration value is reset to the pre-set CO2 value at the register address (12H).

Zero-A: Zero Adjustment is executed when the Zero-A bit is set to 1 while the sensor is placed into zero gas. Measured concentration value is reset to 0ppm.

FUNC: Function setting

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0
Write/read EEPROM									
0FH	FUNC	-	-	LTA1E	LTA2E	PWMR	HPAE	-	PWME
At shipment 0			0	1	0	0	0	0	1

This register enables/disables each type of function and sets other conditions.

This register is not initialized even when CDM7160 is reset.

PWME: Enables/disables the PWM pin.

0: Disable

1: Enable

When 1 is set to the PWME bit, a 1-kHz square wave with a pulse width that is proportional to the CO2 concentration is output from the PWM pin.

When 0 is set, the PWM pin is always at high impedance. You can reduce power consumption by setting 0 when not using the PWM pin.

PWMR: Sets the concentration range represented by the pulse width output to the PWM pin.

0: High concentration

1: Low concentration

The relationship between the concentration and the pulse width (PW) is expressed by the following expressions:

High concentration: Concentration (ppm) = PW (μ s) × 5 Low concentration: Concentration (ppm) = PW (μ s) × 2

HPAE: Enables/disables atmospheric pressure correction.

0: Disable

1: Enable

When 1 is set to the HPAE bit, the CO2 concentration is calculated after correcting the atmospheric pressure based on the data written to the HPA and HIT registers. When 0 is set, the CO2 concentration is calculated assuming an atmospheric pressure of 1013 hPa and altitude of 0m.

LTA1E: Enables/disables the LTA1 (Long term adjustment_1) function.

0: Disable

1: Enable

LTA2E: Enables/disables the LTA2 (Long term adjustment_2) function.

- 0: Disable
- 1: Enable

ERROR: Self-diagnosis

	V								
Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0
Read-only	Read-only register								
10H	ERROR	-	-	-	-	-	-	-	Error0
	Reset	0	0	0	0	0	0	0	0

Error0: Self-diagnosis error

0: No self-diagnosis error

1: Self-diagnosis error generated

The error bit indicates if an error occurred as a result of self-diagnosis. If there is no error, the error bit is 0. If an error occurred, the error bit is 1.

AJCON: User calibration adjustment concentration

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0
Write/read EEPROM									
12H	AJCON	Ajcon7	Ajcon6	Ajcon5	Ajcon4	Ajcon3	Ajcon2	Ajcon1	Ajcon0
At	At shipment 0			0	0	1	0	1	0

This register sets the adjustment concentration (target concentration) when executing user calibration. The default value at the time of shipment is 400 ppm.

The adjustment concentration is expressed as follows:

Adjustment concentration (ppm) = AJCON \times 10 + 300

AJC	AJCON data							
Binary	Hexadecimal	Decimal	concentration					
1111 1111	FF	255	2850ppm					
I			I					
0000 0000	00	0	300ppm					

LTAC: Target concentration for long term adjustment

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0
Write/read EEPROM									
13H	LTAC	Ltac7	Ltac6	Ltac5	Ltac4	Ltac3	Ltac2	Ltac1	Ltac0
At	shipment	0	1	1	0	0	1	0	0

This register sets the adjustment concentration (target concentration) when running LTA function.

The default value at the time of shipment is 400 ppm.

Target concentration is expressed as follows:

Target concentration (ppm) = LTAC + 300

LTA	LTAC data							
Binary	Hexadecimal	Decimal	concentration					
1111 1111	FF	255	555ppm					
I			I					
0000 0000	00	0	300ppm					

LTAP: Period of long term adjustment

Address	Register name	D7	D6	D5	D4	D3	D2	D1	D0
Write/read EEPROM									
14H	LTAP	LtapU1	LtapU0	Ltap5	Ltap4	Ltap3	Ltap2	Ltap1	Ltap0
At	shipment	0	0	1	0	1	1	0	0

This register sets the period of LTA when running LTA function.

The default value at the time of shipment is 45 days.

Upper 2bits set the unit of time. ("00"=day, "01"=week, "10"=month)

		LTAP data		1 7 4
D7	D6	D5	~D0	LTA
(LtapU1)	(LtapU0)	Hexadecimal	Decimal	Period
		3F	63	64 days
0	0		I	
		00	0	1 day

		LTAP data		1 7 4
D7	D6	D5·	~D0	LTA Period
(LtapU1)	(LtapU0)	Hexadecimal	Decimal	Penoa
		3F	63	64×7days(64weeks)
0	1		l	
		00	0	1×7days(1week)

		LTAP data		1 7 0
D7	D6	D5/	~D0	LTA Period
(LtapU1)	(LtapU0)	Hexadecimal	Decimal	Penod
		3F	63	64 × 30days(64months)
1	0	I	I	I
		00	0	1 × 30days(1month)

Serial Number: The serial number (for 12 characters) is written in ASCII code.

Serial number is expressed as follows:

Example: 18227001B0

Serial No.	1	8	2	2	7	0	0	1	В	0		_
Read-only register ↓												
Address	D0H	D1H	D2H	D3H	D4H	D5H	D6H	D7H	D8H	D9H	DAH	DBH
ASCII code	31	38	32	32	37	30	30	31	42	30	2D	2D

Appendix 1 (Configuration of Modbus Registers)

The Modbus registers in CDM7160 consist of two independent register groups - input registers and holding registers.

The tables below show their configuration.

Both types of registers are defined by 32 16-bit addresses. Though accessing the reserved section does not cause an error, no operation is performed.

Although the input register supports continuous read, data can be read from up to eight addresses at once. The address number is the value calculated by subtracting 1 from the register number.

Input registers

Input registers are read-only registers.

Only IR4 is actually enabled.

IR4 stores the measured CO2 concentration in ppm.

Register No.	Address	Register Name	
IR1~3	0 to 2		Reserved
IR4	3	CO2 concentration	CO2 concentration/ppm
IR5~21	4 to 20		Reserved - returns "illegal data address" exception
IR22	21		Reserved
IR23~32	22 to 31		Reserved - returns "illegal data address" exception

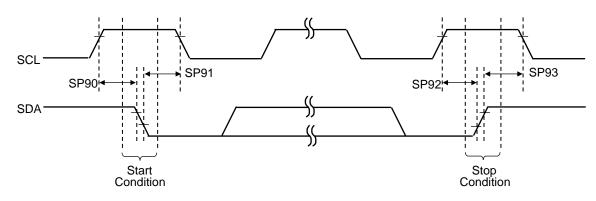
Holding registers

Register No.	Address	Register Name																
HR1	0	Acknowledgment	DI	DI	DI	DI	DI	DI	DI	DI	DI	DI	DI	DI	DI	DI	DI	DI
		register	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
			DI1															
			DI2															
			DI3															
			DI4															
			DI5 DI6 - CO2 air adjustment has been performed DI6 DI7 - CO2 zero adjustment has been performed DI7															
			DI8															
			DI9															
			DI10															
			DI11															
			DI12 DI13 DI14 DI15															
			DI16															
HR2	1	Special	Command Parameter															
	•	Command																
		Register *																
			701	1							0011		00 =		-			
			7CH 06H - CO2 air adjustment 07H - CO2 zero adjustment															
											07H	- C	02 Z6	ero ac	ijustr	ient		
HR3~ 32	2~31		Reserved - returns "illegal data address" exception															

Only HR1 and HR2 are actually enabled.

HR1 supports read/write while HR2 is write-only.

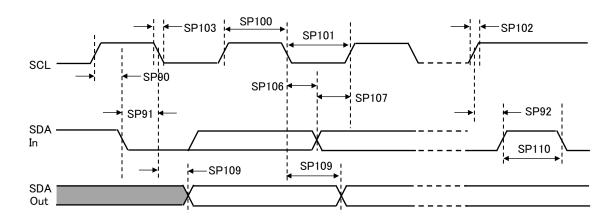
Calibration starts when a value is written to HR2. When calibration is complete, the relevant bit in HR1 becomes 1.


When performing calibration using HR1 and HR2, the following procedure is recommended:

- (1) Write 0 to HR1.
- (2) Write 7C06H (air adjustment) or 7C07H (zero adjustment) to HR2.
- (3) Read HR1 and check that DI6 or DI7 is 1.

Appendix 2 (Specifications of I²C Bus Interface)

The I²C bus interface supports the standard mode and the high-speed mode.


(1) I²C BUS START/STOP BITS TIMING

(2) I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sign	lte	Min.	Тур.	Max.	Unit	Condition		
SP90	TSU:STA	Start Condition Setup time	100kHz mode	4700	-	-		Only relevant for	
			400kHz mode	600	-	-	ns	Repeated Start condition	
0.004	THD:STA	Start Condition Hold time	100kHz mode	4000	-	-		After this period,	
SP91			400kHz mode	600	-	-	ns	the first clock pulse is generated	
SP92	TSU:STO	Stop Condition Setup time	100kHz mode	4700	-	-	20		
5892			400kHz mode	600	-	-	ns		
SP93	THD:STO	Stop Condition Hold time	100kHz mode	4000	-	-	20		
			400kHz mode	600	-	-	ns		

(3) I²C DATA TIMING

(4) I²C BUS DATA REQUIREMENTS

Parameter No.	Sign	Iter	Min.	Max.	Unit	Condition	
			100kHz mode	4.0	-	μs	Device must operate at a minimum of 1.5MHz
SP100	THIGH	Clock high time	400kHz mode	0.6	-	μs	Device must operate at a minimum of 10MHz
			SSP module	1.5Tcy	-		
	TLOW	Clock low time	100kHz mode	4.7	-	μs	Device must operate at a minimum of 1.5MHz
SP101			400kHz mode	1.3	-	μs	Device must operate at a minimum of 10MHz
			SSP module	1.5Tcy	-		
	TR	SDA and SCL rise time	100kHz mode	-	1000	ns	
SP102			400kHz mode	20+0.1C	300	ns	CB is specified to be from 10-400pF
				В			
SP103	TF	SDA and SCL fall time	100kHz mode	-	250	ns	
			400kHz mode	20+0.1C	250		CB is specified to be
				В			from 10-400pF
SP106	THD:DAT	Data input hold	100kHz mode	0	-		
		time	400kHz mode	0	0.9		
SP107	TSU:DAT	Data input setup	100kHz mode	250	-	ns	(Note2)
		time	400kHz mode	100	-	ns	
SP109	TAA	Output valid from clock	100kHz mode	-	3500	ns	(Note1)
			400kHz mode	-	-	ns	
SP110	TBUF		100kHz mode	4.7	-		Time the bus must be
		Bus free time	400kHz mode	1.3	-		free before a new transmission can start
SP111	СВ	Bus capacitive loa	ding	-	-	400	

- Note1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300ns) of the falling edge of SCL in order to avoid unintended generation of Start or Stop conditions
- Note2: A Fast mode (400 kHz) I2C[™] bus device can be used in a Standard mode (100 kHz) I2C bus system, but the requirement TSU:DAT ≧250ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT=1000 + 250 = 1250ns (according to the Standard mode I2C bus specification), before the SCL line is released.