RoHS Compliant

Serial ATA Flash Drive

mSATA M4 -M Product Specifications

August 14th, 2012

Version 1.5

Apacer Technology Inc.

4th Fl., 75 Hsin Tai Wu Rd., Sec.1, Hsichih, New Taipei City, Taiwan 221 Tel: +886-2-2698-2888 Fax: +886-2-2698-2889 www.apacer.com

Features:

Standard Serial ATA 2.6 (Gen. 2)

- Serial ATA 2.6 (Gen. 2)
- SATA II, 3.0 Gbps
- ATA-compatible command set
- ATA modes support

Capacities

- 8, 16, 32, 64, 128 GB

Performance*

Burst read/write: 300 MB/sec

Sustained read: up to 155 MB/sec

Sustained write: up to 80 MB/sec

Intelligent endurance design

- Built-in hardware ECC, enabling up to 16/24 bit correction per 1K bytes
- Static wear-leveling scheme together with dynamical block allocation to significantly increase the lifetime of a flash device and optimize the disk performance
- Flash bad-block management
- S.M.A.R.T.
- Power Failure Management
- ATA Secure Erase
- TRIM

NAND Flash Type: MLC

• MTBF > 1,000,000 hours

Temperature ranges

- Operation:

Standard: 0 °C to 70 °C (32 ~ 158 °F)

Extended: -40 ~ +85 °C (-40 ° ~ 185 °F)**

Storage: -40 °C to 100 °C (-40 ° ~ 212 °F)

Supply voltage

 $-3.3V \pm 5\%$

Power consumption (typical)*

- Active mode: 475 mA

Idle mode: 135 mA

Form factor

- Mini PCIe (50.8 x 29.85 x 3.40, unit: mm)
- JEDEC MO-300 compliant

Connector

52-pin mSATA connector

Shock & Vibration***

Shock: 1500 GVibration: 15 G

RoHS compliant

• Endurance: 13.5 TBW (8GB), 27.01 TBW

(16GB), 54.03 TBW (32GB), 108.07 TBW (64GB),

216.15 TBW (128GB)

^{*}Varies from capacities. The values addressed here are typical and may vary depending on settings and platforms.

^{**}Applies only to 16, 32, 64GB capacities. Please see "Product Ordering Information" for details.

^{***}Non-operating

Table of Contents

1.	1. Product Description	3
	1.1 Introduction	3
	1.2 Functional Block Diagram	3
	1.3 ATA Mode Support	4
	1.4 Capacity Specification	4
	1.5 Performance	4
	1.6 Pin Assignments	5
2.	2. Software Interface	7
	2.1 Command Set	7
3.	3. Flash Management	8
	3.1 Error Correction/Detection	8
	3.2 Bad Block Management	8
	3.3 Wear Leveling	8
	3.4 Power Failure Management	8
	3.5 ATA Secure Erase	8
	3.6 S.M.A.R.T.	9
	3.7 TRIM	9
4.	4. Environmental & Reliability Specifications	10
	4.1 Environments	10
	4.2 Mean Time Between Failures (MTBF)	10
	4.3 Endurance	10
	4.4 Certification and Compliance	11
5.	5. Electrical Characteristics	12
	5.1 Operating Voltage	12
	5.2 Power Consumption	12
6.	6. Physical Characteristics	13
7.	7. Product Ordering Information	14
	7.1 Product Code Designations	14
	7.2 Valid Combinations	

1. Product Description

1.1 Introduction

Apacer's mSATA M4-M is a solid-state disk (SSD) drive in mini PCIe form factor that contains a controller, embedded firmware, and flash media along with a male connector. mSATA M4-M leverages the advantages of standard SATA SSDs in terms of wide compatibilities and reliable performance. Though built with MLC, this SSD can work in highly demanding environment as it can withstand ambient temperature from -40 °C to +85 °C (for certain capacities only).

mSATA M4-M drive is designed with a single-chip controller, offering capacities of up to 128 gigabytes and is compliant with the SATA II high-speed interface standard. Complying with JEDEC MO-300 standard, this mSATA SSD is the widely adopted embedded storage with compact size and exceptional performance.

In addition to block management through dynamical allocation, mSATA M4-M adopts the Apacer-specific global wear-leveling scheme to allow uniform use of all storage blocks, ensuring that the lifespan of a flash media can be significantly increased and the disk performance is optimized as well. mSATA M4-M provides the S.M.A.R.T. feature that follows the SATA Rev. 2.6, ATA/ATAPI-7 specifications and uses the standard SMART command B0h to read data from the drive. This feature protects the user from unscheduled downtime by monitoring and storing critical drive performance.

1.2 Functional Block Diagram

mSATA M4-M drive includes a single-chip SATA ☐ Controller and the flash media, as well as the SATA standard interface. The controller integrates the flash management unit with the controller itself to support multi-channel, multi-bank flash arrays. Figure 1-1 shows the functional block diagram.

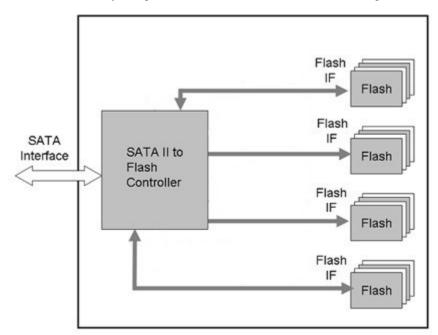


Figure 1-1 Apacer mSATA M4-M block diagram

1.3 ATA Mode Support

mSATA M4-M provides ATA mode support as follows:

- Up to PIO mode-4
- Up to Multiword DMA mode-2
- Up to UDMA mode-5

1.4 Capacity Specification

Capacity specification of mSATA M4-M product family is available as shown in Table 1-1. It lists the specific capacity, the default numbers of logical cylinders and heads, and the number of logical sectors per track for each product line.

Table 1-1 Capacity specification

Capacity	Total Bytes*	Cylinders	Heads	Sectors	Max LBA*
8 GB	8,012,390,400	15525	16	63	15,649,200
16 GB	16,013,942,784	16383	16	63	31,277,232
32 GB	32,017,047,552	16383	16	63	62,533,296
64 GB	64,023,257,088	16383	16	63	125,045,424
128 GB	126,718,694,912	16383	16	63	247,497,451

^{*}Display of total bytes varies from file systems.

LBA count addressed in the table above indicates total user storage capacity and will remain the same throughout the lifespan of the device. However, the total usable capacity of the SSD is most likely to be less than the total physical capacity because a small portion of the capacity is reserved for device maintenance usages.

1.5 Performance

Performance of mSATA M4-M is shown in Table 1-2.

Table 1-2 Performance specifications

Performance Capacity	8 GB	16 GB	32 GB	64 GB	128 GB
Sustained Read (MB/s)	117	125	135	155	145
Sustained Write (MB/s)	26	26	40	80	80

Note: Performance varies from flash configurations and/or platform settings.

^{**}Cylinders, heads or sectors are not applicable for these capacities. Only LBA addressing applies.

^{**}Notes: 1 GB = 1,000,000,000 bytes; 1 sector = 512 bytes.

1.6 Pin Assignments

Pin assignment of the mSATA M4-M is shown in Figure 1-2 and described in Table 1-3.

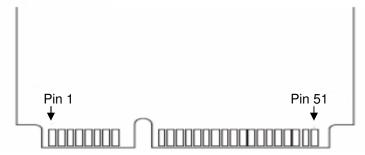


Figure 1-2 Apacer mSATA M4-M pin assignment

Table 1-3 Pin Assignment Description

Pin#	Assignment	Description	Pin#	Assignment	Description
1	N/A	N/A	27	GND	Return Current Path
2	+3.3V	3.3V source	28	N/A	N/A
3	N/A	N/A	29	GND	Return Current Path
4	GND	Return Current Path	30	N/A	N/A
5	N/A	N/A	31	Rx-	SATA Differential
6	N/A	N/A	32	N/A	N/A
7	N/A	N/A	33	Rx+	SATA Differential
8	N/A	N/A	34	GND	Return Current Path
9	GND	Return Current Path	35	GND	Return Current Path
10	N/A	N/A	36	Reserved	No Connect
11	N/A	N/A	37	GND	Return Current Path
12	N/A	N/A	38	Reserved	No Connect
13	N/A	N/A	39	+3.3V	3.3V source
14	N/A	N/A	40	GND	Return Current Path
15	GND	Return Current Path	41	+3.3V	3.3V source
16	N/A	N/A	42	N/A	N/A
17	N/A	N/A	43	GND	Return Current Path
18	GND	Return Current Path	44	N/A	N/A
19	N/A	N/A	45	Reserved	N/A
20	N/A	N/A	46	N/A	N/A
21	GND	Return Current Path	47	Reserved	N/A
22	N/A	N/A	48	N/A	N/A
23	Tx+	SATA Differential	49	DA/DSS	Device Activity / Disable Staggered Spin Up
24	+3.3V	3.3V source	50	GND	Return Current Path
25	Тх-	SATA Differential	51	Presence Detection	Shall be pulled to GND by device
26	GND	Return Current Path	52	+3.3V	3.3V source

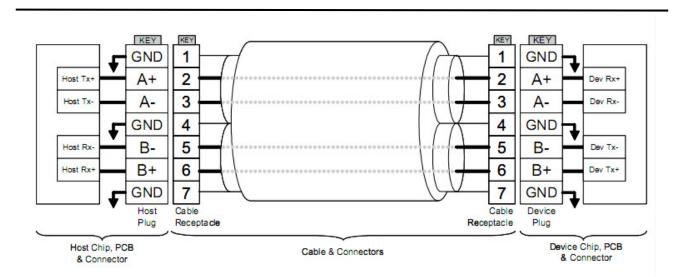


Figure 1-3 SATA Cable/Connector Connection Diagram

The connector on the left represents the Host with TX/RX differential pairs connected to a cable. The connector on the right shows the Device with TX/RX differential pairs also connected to the cable. Notice also the ground path connecting the shielding of the cable to the Cable Receptacle.

2. Software Interface

2.1 Command Set

Table 2-1 summarizes the ATA commands supported by mSATA M4-M.

Table 2-1: Command set

Code	Command	Code	Command
E5h	Check Power Mode	F3h	Security Erase Prepare
06h	Data Set Management	F4h	Security Erase Unit
90h	Execute Device Diagnostic	F5h	Security Freeze Lock
E7h	Flush Cache	F1h	Security Set Password
EAh	Flush Cache EXT	F2h	Security Unlock
Ech	Identify Device	70h	Seek
E3h	Idle	Efh	Set Features
E1h	Idle Immediate	C6h	Set Multiple Mode
91h	Initialize Device Parameters	E6h	Sleep
C8h	Read DMA	B0h	SMART
25h	Read DMA EXT	E2h	Standby
C4h	Read Multiple	E0h	Standby Immediate
29h	Read Multiple EXT	Cah	Write DMA
20h	Read Sector	35h	Write DMA EXT
24h	Read Sector EXT	C5h	Write Multiple
40h	Read Verify Sectors	39h	Write Multiple EXT
42h	Read Verify Sectors EXT	30h	Write Sector
10h	Recalibrate	34h	Write Sector EXT
F6h	Security Disable Password		

3. Flash Management

3.1 Error Correction/Detection

mSATA M4-M implements a hardware ECC scheme, based on the BCH algorithm. It can detect and correct up to 16 bits or 24 bits error in 1K bytes.

3.2 Bad Block Management

Contemporary process technology is unable to guarantee total reliability of NAND flash memory array. When a flash memory device leaves factory, it comes with a highly minimal number of initial bad block during production or out-of-factory as there is no currently known technology that produce flash chips free of bad blocks. On the other hand, bad blocks may develop during program/erase cycles. When host performs program/erase command on a block, bad block may appear in Status Register. Since bad blocks are inevitable, the solution is to keep them in control. Apacer flash devices are programmed with ECC, block mapping technique and S.M.A.R.T to reduce invalidity or error. Once bad blocks are detected, data in those blocks will be transferred to free blocks and error will be corrected by designated algorithms.

3.3 Wear Leveling

Flash memory devices differ from Hard Disk Drives (HDDs) in terms of how blocks are utilized. For HDDs, when a change is made to stored data, like erase or update, the controller mechanism on HDDs will perform overwrites on blocks. On the other hand, NAND flash storage adopts flash as their primary media. Unlike HDDs, flash blocks cannot be overwritten and each P/E cycle wears down the lifespan of blocks gradually. Repeatedly program/erase cycles performed on the same memory cells will eventually cause some blocks to age faster than others. This would bring flash storages to their end of service term earlier. Wear leveling is an important mechanism that level out the wearing of blocks so that the wearing-down of blocks can be almost evenly distributed. This will increase the lifespan of SSDs. Commonly used wear leveling types are Static and Dynamic.

3.4 Power Failure Management

Power Failure Management ensures data transmission when experiencing unstable power supply. When power disruption takes places, NAND Flash will have to cache multiple write-to-flash cycles to securely store data. This urgent operation requires about several milliseconds to get it done. When the supplied voltage is below a certain percentage of the required, the flash controller will be signaled by a detector IC component with low power detection signal and then the firmware will communicate the controller to flush all the data into the cache of Flash storage area. This can prevent incomplete data transmission. The crucial part lies in the strength of the capacitor of the SSD. The capacitor must be able to hold up some milliseconds of remaining time before the power is totally out, for the urgent write-back-into-flash operations to complete.

3.5 ATA Secure Erase

Accomplished by the Secure Erase (SE) command, which added to the open ANSI standards that control disk drives, "ATA Secure Erase" is built into the disk drive itself and thus far less susceptible to malicious software attacks than external software utilities. It is a positive easy-to-use data destroy command, amounting to electronic data shredding. Executing the command causes a drive to internally completely erase all possible user data. This command is carried out within disk drives, so no additional software is required. Once executed, neither data nor the erase counter on the device would be recoverable, which blurs the accuracy of

device lifespan. The process to erase will not be stopped until finished while encountering power failure, and will be continued when power is back on.

3.6 S.M.A.R.T.

S.M.A.R.T. is the abbreviation for Self-Monitoring, Analysis and Reporting Technology, an open standard allowing disk drives to automatically monitor their own health and report potential problems. It provides users critical drive status information and attributes parameters for anticipation purposes. Ideally, this should prevent unexpected drive failure and data loss.

Apacer devices use the standard SMART command B0h to read data out from the drive to activate our S.M.A.R.T. feature that complies with the ATA/ATAPI-7 specifications. Based on the SFF-8035i Rev. 2.0 specifications, S.M.A.R.T. Attribute IDs shall include initial bad block count, bad block count, spare block count, maximum erase count, average erase count and power cycle. When the S.M.A.R.T. Utility running on the host, it analyzes and reports the disk status to the host before the device reaches in critical condition.

3.7 TRIM

Made of millions of NAND flash cells, SSD can be written into groups called pages in 4K size generally, but can only be erased in larger groups called blocks of 128 pages or 512KB. These stipulations are partially the source of many performance issues. Until an address gets used again, the SSD has to keep track of every last bit of data that's written on it. The ATA-TRIM instruction tilts the balance in favor of the SSD. TRIM addresses a major part of the performance degradation issue over time that plagues all SSDs. A TRIM enabled drive running an OS with TRIM support will stay closer to its peak performance over time.

4. Environmental & Reliability Specifications

4.1 Environments

mSATA M4-M environmental specifications follow the US Military Standard MIL-STD-810F, as shown in below table.

Table 4-1 mSATA M4-M environmental specifications

Environment	Specification
	0°C to 70°C (Operating)
Temperature	-40 ~ +85 °C (operating-extended)
·	-40 °C to 100 °C (Non-operating)
Vibration	Sine wave : 15(G), 10~2000(Hz), Random : 7.69 (Grms), 20~2000(Hz)
Shock	Acceleration: 1,500 G, 0.5 ms Peak acceleration: 50 G, 11 ms

Note: extended operating temperature specification applies only to 16, 32, 64GB capacities.

4.2 Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) is predicted based on reliability data for the individual components in mSATA drive. The prediction result for the mSATA M4-M is more than 1,000,000 hours.

Notes about MTBF:

The prediction is based on Bellcore analysis method by assuming device failure rate can be generated by the sum of failure rates in each component.

4.3 Endurance

The endurance of a storage device is predicted by TBW (TeraBytes Written) based on several factors related to usage, such as the amount of data written into the drive, block management conditions, numbers of write/erase in blocks, and daily workload for the drive. These factors can estimate the lifespan of the drive, by averaging the amount of data written into the SSD in a daily basis. The endurance of our devices is estimated by the following:

The lifetime and TBW of the device are listed in the following table.

Capacity	Host Write (GB)	TBW (TB)
8 GB	13509.93	13.5
16 GB		
32 GB 54039.73		54.03
64 GB	108079.47	108.07
128 GB	216158.94	216.15

Notes:

The measurement assumes the data written to the SSD for test is under a typical and constant rate.

The measurement follows the standard metric: 1 TB (Terabyte) = 1000 GB.

4.4 Certification and Compliance

mSATA M4-M complies with the following standards:

- CE EN55022/55024
- FCC 47CFR Part15 Class B
- RoHS
- MIL-STD-810F
- SATA II (SATA Rev. 2.6)
- Up to ATA/ATAPI-7 (including S.M.A.R.T.)

5. Electrical Characteristics

5.1 Operating Voltage

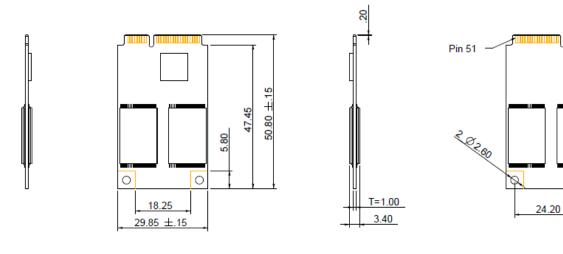
Table 5-1 lists the supply voltage for mSATA M4-M.

Table 5-1 mSATA M4-M operating voltage

Parameter	Conditions	
Supply voltage	3.3V ±5% (3.135 - 3.465 V)	

5.2 Power Consumption

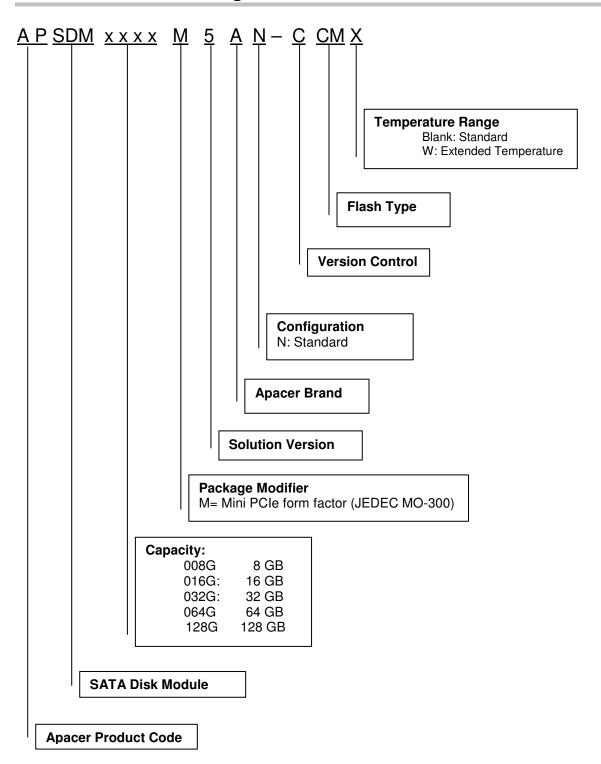
Table 5-2 Power consumption (typical)


Mode	8 GB	16 GB	32 GB	64 GB	128GB
Active (mA)	330	340	360	460	495
Standby (mA)	150	150	150	160	160

Note: Power consumption may vary from flash configurations and/or platform settings.

Pin 1

6. Physical Characteristics


Unit: mm

Tolerance: ± 0.2

7. Product Ordering Information

7.1 Product Code Designations

7.2 Valid Combinations

mSATA M4-M

Capacity	Standard	Extended Temperature
8GB	APSDM008GM5AN-CCM	
16GB	APSDM016GM5AN-CCM	APSDM016GM5AN-CCMW
32GB	APSDM032GM5AN-CCM	APSDM032GM5AN-CCMW
64GB	APSDM064GM5AN-CCM	APSDM064GM5AN-CCMW
128GB	APSDM128GM5AN-CCM	

Note: Please consult with Apacer sales representatives for availabilities.

Revision History

Revision	Description	Date
0.1	Preliminary release	11/07/2011
1.0	Official release	11/22/2011
1.1	Updated operating temperature range: extended ambient temperatures available in certain capacities	11/29/2011
	Updated address for our European branch	
1.2	Updated Electrical Specifications and supply voltage information: from 5V to 3.3V	1/2/2012
1.3	Revised capacity information	1/16/2012
1.4	Added Endurance sub-section	05/04/2012
1.5	Revised mechanical drawing Updated Product Ordering Information due to firmware update	08/14/2012

Global Presence

Taiwan (Headquarters) Apacer Technology Inc.

4th Fl., 75 Hsin Tai Wu Rd., Sec.1

Hsichih, New Taipei City

Taiwan 221 R.O.C.

Tel: +886-2-2698-2888 Fax: +886-2-2698-2889 amtsales@apacer.com

U.S.A. Apacer Memory America, Inc.

386 Fairview Way, Suite102,

Milpitas, CA 95035 Tel: 1-408-518-8699 Fax: 1-408-935-9611 sa@apacerus.com

Japan Apacer Technology Corp.

5F, Matsura Bldg., Shiba, Minato-Ku

Tokyo, 105-0014, Japan Tel: 81-3-5419-2668 Fax: 81-3-5419-0018 jpservices@apacer.com

Europe Apacer Technology B.V.

Science Park Eindhoven 5051 5692 EB Son,

The Netherlands Tel: 31-40-267-0000 Fax: 31-40-267-0000#6199

sales@apacer.nl

China Apacer Electronic (Shanghai) Co., Ltd

1301, No.251, Xiaomuqiao Road, Shanghai,

200032, China

Tel: 86-21-5529-0222 Fax: 86-21-5206-6939 sales@apacer.com.cn

India Apacer Technologies Pvt Ltd,

535, 1st Floor, 8th cross, JP Nagar 3rd Phase,

Bangalore – 560078, India Tel: 91-80-4152-9061 sales india@apacer.com