LCD MODULE SPECIFICATION

MODEL NO.

BC2002B series

FOR MESSRS:

ON DATE OF:

APPROVED BY:

CONTENTS

1. Numbering System
2. Precautions in use of LCD Modules
3. General Specification
4. Absolute Maximum Rating
5. Electrical Characteristics
6. Optical Characteristics
7. Interface Pin Function
8. Power supply for LCD Module and LCD operating voltage adjustment
9. Backlight information
10. Quality Assurance
11. Reliability
12. Appendix (Drawing, KS0066 controller data)

12-1 Drawing

12-2 KS0066 controller data
12-2.1 Function description
12-2.2 C.G ROM table. table 2
12-2-3 Instruction table
12-2.4 Timing characteristics
12-2.5 Initializing soft ware of LCM

1. Numbering System

$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$	$\underline{2002 \mathrm{~B}}$	$\underline{\mathrm{~B}}$	$\underline{\mathrm{~B}}$	$\underline{\mathrm{~N}}$	$\underline{\mathrm{~L}}$	$\underline{\mathrm{H}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{xxx}}$
0	1	2	3	4	5	6	7	8	9

0	Brand	Bolymin	
1	Module Type	$\begin{aligned} & \mathrm{C}=\text { character type } \\ & \mathrm{G}=\text { graphic type } \\ & \mathrm{P}=\mathrm{TAB} / \mathrm{TCP} \text { type } \end{aligned}$	$\begin{aligned} & \mathrm{O}=\text { COG type } \\ & \mathrm{F}=\mathrm{COF} \text { type } \end{aligned}$
2	Format	2002 $=20$ characters, 4 lines $12232=122 \times 32$ dots	
3	Version No.	A type	
4	LCD Color	$\begin{aligned} & \mathrm{G}=\text { STN/gray } \\ & \mathrm{Y}=\text { STN/yellow-green } \\ & \mathrm{C}=\text { color STN } \end{aligned}$	$\begin{aligned} & \mathrm{B}=\mathrm{STN} / \text { blue } \\ & \mathrm{F}=\mathrm{FSTN} \\ & \mathrm{~T}=\mathrm{TN} \end{aligned}$
5	LCD Type	$\mathrm{R}=$ positive/reflective $\mathrm{P}=$ positive/transflective	M=positive/transmissi ve $\mathrm{N}=$ negative/transmissi ve
6	Backlight type/color	L=LED array/ yellow-green H=LED edge/white R=LED array/red G=LED edge/yellow-green	$\mathrm{D}=$ LED edge/blue $\mathrm{E}=\mathrm{EL} /$ white $\mathrm{B}=\mathrm{EL} / \mathrm{blue}$ $\mathrm{C}=\mathrm{CCFL} /$ white
7	CGRAM Font	J=English/Japanese Font E=English/European Font	C=English/Cyrillic Font $\mathrm{H}=$ English/Hebrew Font
8	View Angle/ Operating Temperatur e	B=Bottom/Normal Temperature $\mathrm{H}=$ Bottom/Wide Temperature U=Bottom/Ultra wide Temperature	T=Top/Normal Temperature W=Top/Wide Temperature $\mathrm{C}=9 \mathrm{H} /$ Normal Temperature
9	Special Code	$3=3$ volt logic power supply $\mathrm{n}=$ negative voltage for LCD $\mathrm{c}=$ cable/connector $\mathrm{xxx}=$ to be assigned on data sheet	$\mathrm{t}=$ temperature compensation for LCD $\mathrm{p}=$ touch panel

2. Precaution in use of LCD Module

(1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
(2) Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
(3) Don't disassemble the LCM.
(4) Don't operate it above the absolute maximum rating.
(5) Don't drop, bend or twist LCM.
(6) Soldering: only to the I/O terminals.
(7) Storage: please storage in anti-static electricity container and clean environment.
(8)Don't touch the elastmer connecter, especially insert a backlight panel (EL or CCFL)

3. General Specification

(1) Mechanical Dimension

Item	Dimension	Unit
Number of Characters	20 characters $\times 2$ Lines	-
Module dimension $($ L x W x H)	$180.0 \times 40.0 \times 13.4(\mathrm{Max})-$ LED B/L $180.0 \times 40.0 \times 8.8(\mathrm{Max})-$ EL or No B/L	mm
View area	149.0×23.0	mm
Active area	142.8×20.64	mm
Dot size	1.12×1.12	mm
Dot pitch	1.22×1.22	mm
Character size (Lx W)	6.00×9.66	mm
Character pitch (Lx W)	7.20×10.98	mm

(2) Controller IC: KS0066 (or Equivalent) controller
(3) Temperature Range

	Normal	Wide
Operating	$0 \sim+50^{\circ} \mathrm{C}$	$-20 \sim+70^{\circ} \mathrm{C}$
Storage	$-10 \sim+60^{\circ} \mathrm{C}$	$-30 \sim+80^{\circ} \mathrm{C}$

Bolymin, Inc.

4. Absolute Maximum Ratings

4.1 Electrical Absolute Maximum Ratings

Item	Symbol	Min	Max	Unit
Supply Voltage (Logic)	Vdd-Vss	-0.3	7	V
Supply Voltage (LCD driver)	Vdd-Vo	-0.3	13	V
Input Voltage	VI	Vss	Vdd	
Normal Type	Top	0	+50	${ }^{\circ} \mathrm{C}$
	TsTG	-10	+60	${ }^{\circ} \mathrm{C}$
	Top	-20	+70	${ }^{\circ} \mathrm{C}$
	Tstg	-30	+80	${ }^{\circ} \mathrm{C}$

4.2 Environmental Absolute Maximum Ratings

Item	Operating		Storage		Comment
	(Min.)	(Max.)	(Min.)		

Note (1) $\mathrm{Ta}=0^{\circ} \mathrm{C}: 50 \mathrm{Hr}$ Max.
Note (2) $\mathrm{Ta} \leqq 40^{\circ} \mathrm{C}: 90 \%$ RH MAX
$\mathrm{Ta}>40^{\circ} \mathrm{C}$: Absolute humidity must be lower than the humidity of 90% at $40^{\circ} \mathrm{C}$.

Bolymin, Inc.
5. Electrical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage For Logic	Vdd-Vss	-	4.5	-	5.5	V
Supply Voltage For LCD	Vdd-Vo	* $\mathrm{Ta}=-20^{\circ} \mathrm{C}$	-	5.0	-	V
		$\mathrm{Ta}=0^{\circ} \mathrm{C}$	-	-	-	V
		$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	4.5	-	V
* Wide Temp, Type		$\mathrm{Ta}=50^{\circ} \mathrm{C}$	-	-	-	V
		* $\mathrm{Ta}=+70^{\circ} \mathrm{C}$	-	4.0	-	V
Input High Volt.	V_{IH}	-	2.2	-	Vdd	V
Input Low Volt.	$\mathrm{V}_{\text {IL }}$	-	-	-	0.6	V
Output High Volt.	V_{OH}	-	2.4	-	-	V
Output Low Volt.	$\mathrm{V}_{\text {OL }}$	-	-	-	0.4	V
Supply Current	Idd	$\mathrm{Vdd}=5 \mathrm{~V}$	-	2.3	-	mA

Bolymin, Inc.

6. Optical Characteristics

a. STN

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
View Angle	$(\mathrm{V}) \theta$	$\mathrm{CR} \geqq 2$	10		45	deg
	$(\mathrm{H}) \varphi$	$\mathrm{CR} \geqq 2$	-30		30	deg
	CR	-		3		-
Response Time $25^{\circ} \mathrm{C}$	T rise	-		100	150	ms
	T fall	-		150	200	ms

b. FSTN

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
View Angle	(V) θ	$\mathrm{CR} \geqq 3$	10		60	deg
	$(\mathrm{H}) \varphi$	$\mathrm{CR} \geqq 3$	-45		45	deg
	CR	-		5		-
Response Time $25^{\circ} \mathrm{C}$	T rise	-		100	150	ms
	T fall	-		150	200	ms

6.1 Definitions

View Angles

(Best visual angle direction)

Contrast Ratio

$$
\mathrm{CR}=\frac{\text { Brightness at selected state }(\mathrm{BS})}{\text { Brightness at non-selected state }(\mathrm{Bns})}
$$

\square Response Time

Bolymin, Inc.

7. Interface Pin Function

Pin No.	Symbol	Level	Description
1	Vss	$0 V$	Ground
2	Vdd	5.0 V	Supply Voltage for logic (option +3V)
3	Vo	(Variable)	Operating voltage for LCD
4	RS	H/L	H:DATA, L:Instruction code
5	R/W	H/L	H:Read(MPU \rightarrow Module)L:Write(MPU \rightarrow Module)
6	E	H,H \rightarrow L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	A	-	Power supply for LED backlight (+)
16	K	Power supply for LED backlight (GND)	
14			

Bolymin, Inc.

8. Power Supply for LCD Module and LCD Operating Voltage a Adjustment

* Standart Type

* (Option) LCM operating on " DC 3 V " input with external negative voltage

* (Option) LCM operating on " DC 3V " input with built-in negative voltage

Bolymin, Inc.

9.Backlight Information

9.1 Specification

LED array / yellow-green

Parameter	Symbol	Min	Typ	Max	Unit	Test Condition
Supply Current	ILED	-	500		mA	V=4.2V
Supply Voltage	V	-	4.2	4.3	V	
Reverse Voltage	VR	-	-	8	V	
Luminous Intensity	IV	15	-	-	$\mathrm{cd} / \mathrm{m}^{2}$	ILED=500mA
Wave Length	$\lambda \mathrm{p}$		574		nm	ILED=500mA
Life Time		-	100000	-	Hr.	$\mathrm{V} \leqq 4.2 \mathrm{~V}$
Color	Yellow-green					

9.2 Specification

LED edge/white

Parameter	Symbol	Min	Typ	Max	Unit	Test Condition
Supply Current	ILED	-	60		mA	V=3.6V
Supply Voltage	V	-	3.5	3.7	V	
Reverse Voltage	VR	-	-	8	V	
Luminous Intensity (Note1)	IV	15	-	-	$\mathrm{cd} / \mathrm{m}^{2}$	ILED=60mA
Wave Length	$\lambda \mathrm{p}$				nm	ILED=60mA
Life Time		-	20000	-	Hr.	$\mathrm{V} \leqq 3.6 \mathrm{~V}$
Color	Yellow-green					

Note1: measure on LCD surface

9.2 Backlight driving methods

a. LED B/L drive from pin15 (LED+) pin16 (LED-)
a. 1 array / yellow-green

LCM

b. LED B/L drive from A.K directly
b. 1 array / yellow-green

LCM

c. $*$ (Option) LED B/L drive from pin1 (Vss) pin2 (Vdd)

(1) Jump 1,2 Short
(2) Current Resistor required on RL
(3) Jump 15,16 open
(4) To be sure of enough current supply for both Vdd + LED B/L
d. EL B/L drive from A.K directly

Bolymin, Inc.

10. Quality Assurance

10.1 Inspection conditions

The LCD shall be inspected under 40W white fluorescent light.

Definition of applicable Zones

A : Display Area
B : Non-D isplay Area
10.2 Inspection Parameters

NO.	Parameter	Criteria					
1	Black or White spots			Acceptable Number		Class Of Defects	Acceptable Level
				A	B		
		$\mathrm{D}<0.15$		*	*	Minor	2.5
		$0.15 \leqq \mathrm{D} \leqq 0.2$		4	4		
		$0.2 \leqq \mathrm{D} \leqq 0.25$		2	2		
		$\mathrm{D} \leqq 0.3$		0	1		
		$\mathrm{D}=($ Long + Short)/2 *: Disregard					
2	Scratch, Substances	$X(\mathrm{~mm})$ $Y(\mathrm{~mm})$					
					Acceptable Number A	Class Of Defects	Acceptable Level
					B		
			$0.04 \geqq$ W		*	Minor	2.5
		$3.0 \geqq$ L	$0.06 \geqq$ W		4		
		$2.0 \geqq \mathrm{~L}$ -	$0.08 \geqq$ W				
			$0.1<\mathrm{W}$				
		X: Length Y: Width *: Disregard Total defects should not exceed $4 /$ module					
3	Air Bubbles (between glass \& polarizer)						
				Acceptable Number		Class Of Defects	Acceptable Level
				A	B		
		$\mathrm{D} \leqq$	0.15	*	*	Minor	2.5
		$0.15<$ D	D 0.25	2	*		
		0.25	$<$ D	0	1		
		*: Disregard Total defects shall not excess 3 /module.					

Uniformity

11. Reliability

Content of Reliability Test

Environmental Test				
No.	Test Item	Content of Test	Test Condition	Applicable Standard
1	High Temperature storage	Endurance test applying the high storage temperature for a long time.	$60^{\circ} \mathrm{C}$ 200hrs	-
2	Low Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	-
3	High Temperature Operation	Endurance test applying the electric stress (Voltage \& Current) and the thermal stress to the element for a long time.	$50^{\circ} \mathrm{C}$ 200hrs	-
4	Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	$0^{\circ} \mathrm{C}$ 200hrs	-
5	High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	$60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ 96hrs	-
6	High Temperature/ Humidity Operation	Endurance test applying the electric stress (Voltage \& Current) and temperature / humidity stress to the element for a long time.	$\begin{aligned} & 40^{\circ} \mathrm{C}, 90 \% \mathrm{RH} \\ & 96 \mathrm{hrs} \end{aligned}$	-
7	Temperature Cycle	Endurance test applying the low and high temperature cycle.	$\begin{aligned} & -20^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C} \\ & 10 \text { cycles } \end{aligned}$	-
Mechanical Test				
8	Vibration test	Endurance test applying the vibration during transportation and using.	$\begin{aligned} & 10 \sim 22 \mathrm{~Hz} \rightarrow 1.5 \mathrm{mmp}-\mathrm{p} \\ & 22 \sim 500 \mathrm{~Hz} \rightarrow 1.5 \mathrm{G} \\ & \text { Total } 0.5 \mathrm{hrs} \\ & \hline \end{aligned}$	-
9	Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction	-
10	Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115 mbar 40hrs	-
Others				
11	Static electricity test	Endurance test applying the electric stress to the terminal.	$\begin{aligned} & \mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega \\ & \mathrm{CS}=100 \mathrm{pF} \\ & 1 \text { time } \end{aligned}$	-

$* * *$ Supply voltage for logic system $=5 \mathrm{~V}$. Supply voltage for LCD system $=$ Operating voltage at $25^{\circ} \mathrm{C}$

Bolymin, Inc.
12. Appendix (Drawing ,KS0066 controller data)

12-1 Drawing

Bolymin, Inc.
\leftrightarrow

12-2. KS0066 controller data

12-2.1 Function description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)
When the busy flag is 1 , the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When $\mathrm{RS}=0$ and $\mathrm{R} / \mathrm{W}=1$, the busy flag is output to DB 7 . The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)
The address counter (AC) assigns addresses to both DDRAM and CGRAM
Display Data RAM (DDRAM)
This DDRAM is used to store the display data represented in 8 -bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationship between DDRAM addresses and positions on the liquid crystal display.

DDRAM Address

Display position DDRAM address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

00	01	02	03	04	05	06	07	08	09	0 A	0 B	0 C	0 D	0 E	0 F
40	41	42	43	44	45	46	47	48	49	4 A	4 B	4 C	4 D	4 E	4 F

Example: 2-Line by 16-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8 -bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

For $5 * 8$ dot character patterns

Character Codes (DDRAM data)	CGRAM Address	Character Patterns (CGRAM data)	
$\begin{array}{cccccccc} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ & H & & & \end{array}$	$\begin{array}{cccccc} 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & \text { Low } & \end{array}$	$\begin{array}{cccccccc} \begin{array}{llllll} 7 & 6 & 5 & 4 & 3 & 2 \end{array} & 1 & 0 \\ & \\ & \text { High } \end{array}$	
$\left[\begin{array}{cccccccc} 0 & 0 & 0 & 0 & * & 0 & 0 & 0 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ 0 & 0 & 0 & 0 & * & 0 & 0 & 1 \end{array}\right.$	0 0		Character pattern(1) Cursor pattern Character pattern(2) Cursor pattern
	$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}$	* * *	
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & * & 1 & 1 & 1\end{array}$	$\left.\begin{array}{lll\|lll}1 & 1 & 1 & 1 & 0 & 0 \\ & & & 1 & 0 & 1 \\ & & & & 1 & 1\end{array}\right) 0$	* * *	

For 5 * 10 dot character patterns

Character Codes (DDRAM data)	CGRAM Address	Character Patterns (CGRAM data)	
$\begin{array}{cccccccc} \begin{array}{llllll} 7 & 6 & 5 & 4 & 3 & 2 \end{array} & 1 & 0 \\ & \text { High } & & & \text { Low } \end{array}$	$\begin{array}{rrrrrr} 5 & 4 & 3 & 2 & 1 & 0 \\ \text { High } & & & \text { Low } & \end{array}$	$$	
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & * & 0 & 0 & 0\end{array}$		$\begin{array}{ccc\|ccccc} * & * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & & 0 & & & 0 \\ * & * & * & & & 0 & 0 & \\ * & * & * & & 0 & 0 & 0 & \\ * & * & * & & 0 & 0 & 0 & \\ * & * & * & & & & & 0 \\ * & * & * & & 0 & 0 & 0 & 0 \\ * & * & * & & 0 & 0 & 0 & 0 \\ * & * & * & & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 & 0 \end{array}$	Character pattern Cursor pattern
	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$		

13-2.2 C.G ROM table. table 2
Code J: English - Japanese Font

Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	HHHH
LLLL	$\begin{aligned} & \text { CG } \\ & \text { RAM } \\ & (1) \end{aligned}$							--9-9-				--- - -				E-":
LLLH	(2)										E-			-	E=E	----
LLHL	(3)		:					E-"						-		--E-
LLHH	(4)							- - -			- $=$:	-:-:
LHLL	(5)										-					E: $=:$
LHLH	(6)					E	- =	-			-:				-2-E=	- - -
LHHL	(7)										--"=:	- - =	- =			
LHHH	(8)		-					- $=$			-"=-				-"--	-8"E.
HLLL	(1)		E^{-}								- ${ }^{-3}$			E	- $\mathrm{E}^{-=}$	-=-=-
HLLH	(2)										-8.8.		\%	\%	- -	- $=1.0$
HLHL	(3)		- - =	$\begin{aligned} & \text { E: } \\ & \text { E } \end{aligned}$							--E- - - -	- - - - =-	"	E.-"	-	
HLHH	(4)		- E-E								-"E-		E-	E-5	-	
HHLL	(5)		-		?			:			- E-E	-" $=$ - $=$ -				E=E
HHLH	(6)		---- -								-6-E.			- =		--E--
HHHL	(7)		-:								- =- =					
HHHH	(8)		-"-"					-E"			- $=.5$			-		

$\bullet \bullet$

Code E：English－European Font

Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	H HLL	HHLH	HHHL	HHHH
LLLL							E				$\begin{gathered} \text { EEE } \\ \text { EEEE } \end{gathered}$	－				
LLLH	$\begin{gathered} \text { C G } \\ \text { R A M } \\ (2) \end{gathered}$						．	－			-i"	－	－8		E^{7}	E．－5＇
LLHL	C G R A M （ 3 ）		E									－-C	－			
LL H H	C G RAM （ 4 ）				－						E.E	\cdots			－	－
L H L L	$\begin{aligned} & \text { C G } \\ & \text { R A M } \\ & (5) \end{aligned}$								E－E			－${ }^{-}$		E＂•量	－＂	\％
L H L H						國	－EEE	E				－ 0		E＝－＂畐		
L H H L	C G RAM （ 7 ）					e_{0}			－EEE		E		$=$		－	慁奢＝
L H H H	$\begin{aligned} & \text { C G } \\ & \text { R A M } \\ & (8) \end{aligned}$		－		－	㫿最最	－8．E	E E	－	E．－．－				$E^{8} E$	－	- -
HLLL	C G R A M （ 1 ）		8					－${ }^{-}$		E－0．E	E－		－$=$	8＝0－	－	
H L L H	$\begin{gathered} \text { C G } \\ \text { R A M } \\ (2) \end{gathered}$	E			.		=	EnEB	－		\％					-EEE
H L H L	$\begin{gathered} \text { C G } \\ \text { R A M } \\ (3) \end{gathered}$			E!			－		E日E＝						E＝	
H L H H	$\begin{gathered} \text { C G } \\ \text { R A M } \\ (4 \text {) } \end{gathered}$		- - 夏	E：		＂•		$\begin{aligned} & \text { E" } \\ & E_{\text {" }}^{2} \end{aligned}$	En					$E^{\prime \prime}$	．	EB
H H L L	C G R A M （ 5 ）		E"		㝠気			\％		E"E				－＂E：		
H HLH	$\begin{gathered} \text { C G } \\ \text { R A M } \end{gathered}$ (6)	－$=$－			夏:	"			-			- ERE	E：			E日：
H H H L			E：	E°								-				
H H H H	$\begin{gathered} \text { C G } \\ \text { R A M } \\ (8) \end{gathered}$			E"	＂•＂			:			En				－	E＂EE

Code C:English-Cyrillic Font

Code H：English／Hebrew

	LLLL	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	HHHH
LLLL	\cdots	\because	$+$			\because		\because	\because						
LLLH	\because							\because	\because						
LLHL	\because							\because	\because						
LLHH	\because							\because	\square \longmapsto						
LHLL	\square $\#$				\square			\because	\because						
LHLH	\because								\because			\square			
LHHL								\because	\because						
LHHH	\because				2－2			\square \longmapsto	出						
HLLL	\because							\square $\longmapsto \quad$	\because						
HLLH	\because							\because	\because			\＃\＃			\square
HLHL	\because							\square \square	サ氷						
HLHH								\square \longmapsto	\because			W			
HHLL	\because		Br					\because	\because						
HHLH	\because	\square $\#$					$\because B$	\square \square	\square \longmapsto						
HHHL	\because							\square \square	\because						\＃
HHHH								\because	\because					\square	

Bolymin, Inc.

12-2.3 Instruction table

Instruction	Instruction Code										Description	Execution time (fosc=270K hz)
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear Display	0	0	0	0	0	0	0	0	0	1	Write " 00 H " to DDRAM and set DDRAM address to " 00 H " from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to " 00 H " from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	$39 \mu \mathrm{~s}$
Display ON/OFF Control	0	0	0	0	0	0	1	D	C	B	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	$39 \mu \mathrm{~s}$
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	$39 \mu \mathrm{~s}$
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL:8-bit/4-bit), numbers of display line ($\mathrm{N}: 2-$ line/1-line) and, display font type (F:5×11 dots/5× 8 dots)	$39 \mu \mathrm{~s}$
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	$39 \mu \mathrm{~s}$
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	$39 \mu \mathrm{~s}$
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	$0 \mu \mathrm{~s}$
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	$43 \mu \mathrm{~s}$
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	$43 \mu \mathrm{~s}$

Bolymin, Inc.

12-2.4 Timing characteristics

12-2.4.1 Write Operation

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vdd}=5.0 \pm 0.5 \mathrm{~V}$					
Item	Symbol	Min	Typ	Max	Unit
Enable cycle time	$\mathrm{t}_{\mathrm{cycE}}$	500	-	-	ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	230	-	-	ns
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	20	ns
Address set-up time (RS, R/W to E)	t_{AS}	40	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	80	-	-	ns
Data hold time	t_{H}	10	-	-	ns

12-2.4.2 Read Operation

NOTE: $*$ VOL1 is assumed to be 0.8 V at 2 MHZ operation.

	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vdd}=5.0 \pm 0.5 \mathrm{~V}$				
Item	Symbol	Min	Typ	Max	Unit
Enable cycle time	$\mathrm{t}_{\mathrm{cycE}}$	500	-	-	ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	230	-	-	ns
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}, \mathrm{t}_{\mathrm{Ef}}}$	-	-	20	ns
Address set-up time (RS, R/W to E)	t_{AS}	40	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	160	ns
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	5	-	-	ns

12-2.5 Initializing soft ware of LCM

12-2.5.1 8-bit interface

BF can be checked after the following instructions. When BF is not checked, the waiting time between instructions is longer than execution instruction time.

| RS | $\mathrm{R} / \overline{\mathrm{W}}$ | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 1 | N | F | $*$ | $*$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S |

-Function set (Interface is 8 bits long. Specify the number of display lines and font.)
The number of display lines and character font can not be changed after this point.

- Display off
- Display clear
- Entry mode set

Initialization ends

8-Bit Ineterface

12-2.5.2 4-bit interface

4-Bit Ineterface

