

www.sensirion.com Confidential - Version 2.1.1 - August 2017 1

SGP30 Driver Integration (for Software I2C)
A Step-By-Step Guide

Preface

1.1. Copy all SGP driver files (.c and .h) into your software project folder.
1.2. Make sure all files are added to your IDE

To use software I2C the file sensirion_configuration.c (or sensirion_configuration.cpp for c++ projects) needs to be
completed. All parts marked with “// IMPLEMENT” have to be replaced with the according setup.

2.1. Initialize the components needed to set SDA and SCL pins.

2.2. Implement sensirion_SDA_in() and sensirion_SCL_in() to configure the SDA and SCL pins as input.

void sensirion_init_pins()
{
 // IMPLEMENT
}

void sensirion_SDA_in()
{
 // IMPLEMENT
}

void sensirion_SCL_in()
{
 // IMPLEMENT
}

The easiest way to integrate the SGP30 sensor into a
device is Sensirion’s SGP30 driver. This document explains
how to implement the hardware abstraction layer of the SGP
driver and describes the provided API

Step-By-Step Guide……….…….....…………………...p. 1-5
Revision History..………….…….....…….......................p. 7

COPY FILES TO YOUR PROJECT STEP 1 2 3

IMPLEMENT sensirion_configuration.c STEP 2 1 3

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.1.1 - August 2017 2

2.3. Implement sensirion_SDA_out() and sensirion_SCL_out() to configure the pins as output.

2.4. Implement sensirion_SDA_read() and sensirion_SCL_read() to read the values from the pins.

Return: 0 if the pin is low and 1 otherwise.

2.5. Implement sensirion_sleep_usec() to delay the execution for the given time in microseconds.

The SGP driver provides functions to probe the sensor, to get the serial ID, and to measure/read tVOC and CO2-eq.

3.1. Call sgp_get_feature_set_version() to readout the feature set version and product type of the SGP

sensor. If product_type is 0 it is a SGP30 gas sensor, if it is 1 it is an SGPC3 gas sensor.

Return: 0 if the sensor is detected, else an error code.

3.2. Call sgp_get_serial_id() to readout the serial ID of the SGP sensor.

3.3. Call sgp_measure_iaq_blocking_read() to start a tVOC and CO2-eq measurement and to readout the

values.

Note: This function blocks the processor while the measurement is in progress.
Return: 0 if the command is successful, else an error code.

void sensirion_SDA_out()
{
 // IMPLEMENT
}

void sensirion_SCL_out()
{
 // IMPLEMENT
}

uint8_t sensirion_SDA_read()
{
 // IMPLEMENT
 return 1;
}

uint8_t sensirion_SCL_read()
{
 // IMPLEMENT
 return 1;
}

void sensirion_sleep_usec(uint32_t useconds) {
 // IMPLEMENT
}

int16_t sgp_probe(void);

int16_t sgp_get_feature_set_version (u16 *feature_set_version, u8 *product_type);

int16_t sgp_measure_iaq_blocking_read(uint16_t *tvoc_ppb, uint16_t *co2_eq_ppm);

MEASURE IAQ (tVOC / CO2eq) AND SIGNAL VALUES STEP 3 1 2

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.1.1 - August 2017 3

3.4. For non-blocking measurement and readout of tVOC and CO2-eq use the two functions sgp_measure_iaq() and

sgp_read_iaq().

Return: 0 if the command is successful, else an error code.

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement result using sgp_read_iaq().

Note: If the measurement is still in progress, this function returns an error code.
Return: 0 if the command is successful, else an error code.

3.5. For best performance and faster startup times, the current baseline needs to be persistently stored on the device before
shutting it down and set again accordingly after boot up.

Use sgp_get_iaq_baseline() to get the baseline.

Return: 0 if the command is successful, else an error code.

Note: If the call is not successful, the baseline value must be discarded. Approximately in the first 60min of operation

after sgp_probe or sgp_iaq_init the call will fail unless a previous baseline was restored.

3.6. Use sgp_set_iaq_baseline() to set the baseline.

Return: 0 if the command is successful, else an error code.

Note: The baseline value must be exactly as returned by sgp_get_iaq_baseline()and should only be set if it’s less

than one week old.

3.7. SGP baseline states

Call sgp_iaq_init() to reset all SGP baselines. The initialization takes up to around 15 seconds, during which

sgp_iaq_measure() output will not change.

If no stored baseline is available after initializing the baseline algorithm, the sensor has to run for 12 hours until the baseline
can be stored. This will ensure an optimal behavior for preceding startups. Reading out the baseline prior should be avoided
unless a valid baseline is restored first. Once the baseline is properly initialized or restored, the current baseline value should
be stored approximately once per hour. While the sensor is off, baseline values are valid for a maximum of seven days.

3.8. Call sgp_iaq_init() to initialize or re-initialize the indoor air quality algorithm.

int16_t sgp_iaq_init(void);

Return: 0 if the command is successful, else an error code.

int16_t sgp_measure_iaq(void);

int16_t sgp_read_iaq(uint16_t *tvoc_ppb, uint16_t *co2_eq_ppm);

int16_t sgp_get_iaq_baseline (uint32_t *baseline);

int16_t sgp_set_iaq_baseline (uint32_t baseline);

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.1.1 - August 2017 4

Note: sgp_iaq_init() is already called as part of sgp_probe().

3.9. Call sgp_measure_tvoc_blocking_read() to start a tVOC measurement and to readout the value in ppb.

Note: This function blocks the processor while the measurement is in progress.

Return: 0 if the command is successful, else an error code.

3.10. For non-blocking measurement and readout of tVOC use the two functions sgp_measure_tvoc() and
sgp_read_tvoc()

Return: 0 if the command is successful, else an error code.

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement result using sgp_read_tvoc().

Note: If the measurement is still in progress, this function returns an error code.

Return: 0 if the command is successful, else an error code.

3.11. Call sgp_measure_co2_eq_blocking_read() to start a CO2-eq measurement and to readout the value in

ppm.

Note: This function blocks the processor while the measurement is in progress.
Return: 0 if the command is successful, else an error code.

3.12. For non-blocking measurement and readout of CO2-eq use the two functions sgp_measure_co2_eq() and

sgp_read_co2_eq().

Return: 0 if the command is successful, else an error code.

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement result using

sgp_read_co2_eq().

Note: If the measurement is still in progress, this function returns an error code.
Return: 0 if the command is successful, else an error code.

3.13. Call sgp_measure_signals_blocking_read() to start signal measurements and to readout the values.

Return: 0 if the command is successful, else an error code.
Note: The returned values are scaled signals. To get the resulting signals, the values must first be divided by 512.
Note: This function blocks the processor while the measurement is in progress. This function modifies the IAQ baseline, thus

when using IAQ functions sgp_measure_iaq(), sgp_measure_tvoc(), sgp_measure_co2_eq() and

their blocking_read equivalents, the baseline must be saved prior to running this call, and restored after:

int16_t ret;
uint16_t scaled_ethanol_signal, scaled_h2_signal;

int16_t sgp_measure_tvoc_blocking_read(uint16_t *tvoc_ppb);

int16_t sgp_measure_tvoc(void);

int16_t sgp_read_tvoc(uint16_t *tvoc_ppb);

int16_t sgp_measure_co2_eq_blocking_read(uint16_t *co2_eq_ppm);

int16_t sgp_measure_co2_eq(void);

int16_t sgp_read_co2_eq(uint16_t *co2_eq_ppm);

int16_t sgp_measure_signals_blocking_read(uint16_t *scaled_ethanol_signal,
 uint16_t *scaled_h2_signal);

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.1.1 - August 2017 5

// save current baseline
uint32_t baseline;
ret = sgp_get_iaq_baseline(&baseline);

// run signals measurement
ret = sgp_measure_signals_blocking_read(&scaled_ethanol_signal, &scaled_h2_signal);

// wait and read signals, then restore baseline
ret = sgp_set_iaq_baseline(baseline);

3.14. For non-blocking measurement and readout of signals values use the two functions sgp_measure_signals()

and sgp_read_signals().

Return: 0 if the command is successful, else an error code.

Note: This function modifies the IAQ baseline, thus when using IAQ functions sgp_measure_iaq(),

sgp_measure_tvoc(), sgp_measure_co2_eq() and their blocking_read equivalents, the baseline must be

saved prior to running this call, and restored after:

int16_t ret;
uint16_t scaled_ethanol_signal, scaled_h2_signal;

// save current baseline
uint32_t baseline;
ret = sgp_get_iaq_baseline(&baseline);

// run signals measurement
ret = sgp_measure_signals();
usleep(200000);
sgp_read_signals(&scaled_ethanol_signal, &scaled_h2_signal)

// wait and read signals result, then restore baseline
ret = sgp_set_iaq_baseline(baseline);

Be sure to wait until the SGP sensor finishes the measurement. Read the measurement results using

sgp_read_signals().

Note: If the measurement is still in progress, this function returns an error code.
Note: The returned values are scaled signals. To get the resulting signals, the values must first be divided by 512.
Return: 0 if the command is successful, else an error code.

3.15. Call sgp_set_absolute_humidity()to a value greater than 0 and smaller than 256000 mg/m3 to enable the

humidity compensation feature, or write 0 to disable it.
The absolute humidity in g/m3 can be retrieved by measuring the relative humidity and temperature using a Sensirion SHT
sensor and converting the value to absolute humidity with the formula

With AH in g/m3, RH in 0-100%, and t in °C

int16_t sgp_measure_signals(void);

int16_t sgp_read_signals(uint16_t *scaled_ethanol_signal,
 uint16_t *scaled_h2_signal);

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.1.1 - August 2017 6

Note: the value in g/m3 has to be multiplied by 1000 to convert to mg/m3 and any remaining decimal places have to be
rounded and removed since the interface does not support floating point numbers.

Return: 0 if the command is successful, else an error code.

Note: The humidity compensation is disabled by setting the value to 0.
Example: To set the absolute humidity to 13.000 g/m3:

3.16. Call sgp_measure_test() to run the on-chip self-test. This command can be used during production to ensure

the SGP30 is not damaged. A success is indicted by a return code of 0, in that case the value of test_result will be

0xd400 .

 Note: sgp_measure_test()must not be executed after sgp_iaq_init(). If this is needed, the baseline

must be retrieved prior to running sgp_measure_test. After sgp_measure_test, sgp_iaq_init followed by

setting the baseline again is needed to resume IAQ operations.

3.17. Call sgp_get_driver_version() to retrieve the driver version.

Return: The driver version string is returned in the form "major.minor.patchset" e.g. "2.2.1"

int16_t sgp_set_absolute_humidity(uint32_t absolute_humidity);

// Set absolute humidity to 13.000 g/m^3
uint32_t ah = 13000;
sgp_set_absolute_humidity(ah);

// Run the on-chip self-test
uint16_t test_result;
int16_t ret = sgp_measure_test(&test_result);
if (ret != STATUS_OK) {
 // The sensor is likely damaged
}

const char *sgp_get_driver_version(void);

Generic SGP Driver Integration for Hardware I2C

www.sensirion.com Confidential - Version 2.1.1 - August 2017 7

REVISION HISTORY

Headquarters and Subsidiaries

Sensirion AG
Laubisruetistr. 50
CH-8712 Staefa ZH
Switzerland

Phone: +41 44 306 40 00
Fax: +41 44 306 40 30
info@sensirion.com
www.sensirion.com

Sensirion Inc., USA
Phone: +1 805 409 4900
info_us@sensirion.com
www.sensirion.com

Sensirion Japan Co. Ltd.
Phone: +81 3 3444 4940
info@sensirion.co.jp
www.sensirion.co.jp

Sensirion Korea Co. Ltd.
Phone: +82 31 345 0031 3
info@sensirion.co.kr
www.sensirion.co.kr

Sensirion China Co. Ltd.
Phone: +86 755 8252 1501
info@sensirion.com.cn
www.sensirion.com.cn

Sensirion AG (Germany)
Phone: +41 44 927 11 66
info@sensirion.com
www.sensirion.com To find your local representative, please visit www.sensirion.com/contact

Date Version Page(s) Changes

October 2016 1.0.0 all Initial release

January 2017 1.0.1 all Add CO2-eq output to the driver

January 2017 1.0.2 all Fixing layout

January 2017 1.1.0 all Add IAQ functions

January 2017 1.1.1 3 Document how long a baseline value is valid

March 2017 1.2.0 3-5 Update baseline documentation

March 2017 1.4.0 3 Update baseline persistence documentation

April 2017 1.5.0 1, 3 SGP30

May 2017 2.0.0 all Change interfaces from resistance to ethanol and h2
signals

May 2017 2.0.1 all Document signal scaling

August 2017 2.1.0 6 Add humidity compensation, measure_test

August 2017 2.1.1 6 Document driver version

mailto:info@sensirion.com
http://www.sensirion.com/
mailto:info_us@sensirion.com
http://www.sensirion.com/
mailto:info@sensirion.co.jp
http://www.sensirion.co.jp/
mailto:info@sensirion.co.kr
http://www.sensirion.co.kr/
mailto:info@sensirion.com.cn
http://www.sensirion.com/
mailto:info@sensirion.com
http://www.sensirion.com/
http://www.sensirion.com/contact

