

#### **Features**

- Embedded EEPROM
  - · Very Easy Development with RFPDK
  - · All Features Programmable
- Frequency Range: 300 to 480 MHz
- Symbol Rate: 0.1 to 40 kbps
- Sensitivity: -114 dBm at 1 kbps, 0.1% BER
- 3-wire SPI Interface for EEPROM Programming
- Stand-Alone, No External MCU Control Required
- Configurable Duty-Cycle Operation Mode
- Supply Voltage: 1.8 to 3.6 V
- Low Power Consumption: 3.8 mA
- Low Sleep Current
  - · 60 nA when Sleep Timer Off
  - 440 nA when Sleep Timer On
- RoHS Compliant
- Module Size:32\*11\*5.0mm



The RFM210 is an ultra low power, high performance, low-cost OOK stand-alone RF receiver for various 300 to 480 MHz wireless applications. It is part of the CMOSTEK NextGenRFTM family, which includes a complete line of transmitters, receivers and transceivers. An embedded EEPROM allows the frequency, symbol rate and other features to be programmed into the device using the CMOSTEK USB Programmer and RFPDK. Alternatively, in stock products of 315/433.92 MHz are available for immediate demands with no need of EEPROM programming. When the RFM210 is always on, it consumes only 3.8 mA current while achieving -114 dBm receiving sensitivity. It consumes even less power when working in duty-cycle operation mode via the built-in sleep timer. The RFM210 receiver together with the RFM110 transmitter enables an ultra low cost RF link.



## **RFM210**

## **Applications**

- Low-Cost Consumer Electronics Applications
- Home and Building Automation
- Infrared Receiver Replacements
- Industrial Monitoring and Controls
- Remote Automated Meter Reading
- Remote Lighting Control System
- Wireless Alarm and Security Systems
- Remote Keyless Entry (RKE)



## **Abbreviations**

Abbreviations used in this data sheet are described below

| AGC           | Automatic Gain Control        |          | PC        | Personal Computer                   |     |                               |
|---------------|-------------------------------|----------|-----------|-------------------------------------|-----|-------------------------------|
| AN            | Application Notes             |          | PCB       | Printed Circuit Board               |     |                               |
| BER           | Bit Error Rate                |          | PLL       | Phase Lock Loop                     |     |                               |
| BOM           | Bill of Materials             |          | PN9       | Pseudorandom Noise 9                |     |                               |
| BSC           | Basic Spacing between Centers |          | POR       | Power On Reset                      |     |                               |
| BW            | Bandwidth                     |          | PUP       | Power Up                            |     |                               |
| DC            | Direct Current                |          | QFN       | Quad Flat No-lead                   |     |                               |
| <b>EEPROM</b> | Electrically Erasable Progr   | rammable | RF        | Radio Frequency                     |     |                               |
|               | Read-Only Memory              |          | RFPDK     | RF Products Development Kit         |     |                               |
| ESD           | Electro-Static Discharge      |          | RoHS      | Restriction of Hazardous Substances |     |                               |
| ESR           | Equivalent Series Resistance  |          | RSSI      | Received Signal Strength Indicator  |     |                               |
| Ext           | Extended                      |          | Rx        | Receiving, Receiver                 |     |                               |
| IF            | Intermediate Frequency        |          | SAR       | Successive Approximation Register   |     |                               |
| LNA           | Low Noise Amplifier           |          | SPI       | Serial Port Interface               |     |                               |
| LO            | Local Oscillator              |          | TH        | Threshold                           |     |                               |
| LPOSC         | Low Power Oscillator          |          | Tx        | Transmission, Transmitter           |     |                               |
| Max           | Maximum                       |          | Тур       | Typical                             |     |                               |
| MCU           | Microcontroller Unit          |          | USB       | Universal Serial Bus                |     |                               |
| Min           | Minimum                       |          | Minimum   |                                     | VCO | Voltage Controlled Oscillator |
| MOQ           | Minimum Order Quantity        |          | WOR       | Wake On Radio                       |     |                               |
| NP0           | Negative-Positive-Zero        |          | XOSC      | Crystal Oscillator                  |     |                               |
| NC            | Not Connected                 |          | XTAL/Xtal | Crystal                             |     |                               |
| оок           | On-Off Keying                 |          |           |                                     |     |                               |
|               |                               |          |           |                                     |     |                               |





## **Table of Contents**

| 1. | Electrical Characteristics                | 4  |
|----|-------------------------------------------|----|
|    | 1.1 Recommended Operation Conditions      | 4  |
|    | 1.2 Absolute Maximum Ratings              | 4  |
|    | 1.3 Receiver Specifications               | 5  |
|    | 1.4 Crystal Oscillator                    | 6  |
|    | 1.5 LPOSC                                 | 6  |
| 2. | Pin Descriptions                          | 7  |
| 3. | Typical Performance Characteristics       | 8  |
| 4. | Typical Application Schematic             | 9  |
| 5. | Functional Descriptions                   | 10 |
|    | 5.1 Overview                              | 10 |
|    | 5.2 Modulation, Frequency and Symbol Rate | 10 |
|    | 5.3 Embedded EEPROM and RFPDK             | 11 |
|    | 5.4 All Configurable Options              | 11 |
|    | 5.5 Internal Blocks Description           | 13 |
|    | 5.5.1 RF Front-end and AGC                | 13 |
|    | 5.5.2 IF Filter                           | 13 |
|    | 5.5.3 RSSI                                | 13 |
|    | 5.5.4 SAR ADC                             | 14 |
|    | 5.5.5 Crystal Oscillator                  | 14 |
|    | 5.5.6 Frequency Synthesizer               | 14 |
|    | 5.5.7 LPOSC                               |    |
|    | 5.6 Operation Mode                        |    |
|    | 5.7 Always Receive Mode                   | 16 |
|    | 5.8 Duty-Cycle Receive Mode               |    |
|    | 5.9 Easy Duty-Cycle Configurations        | 17 |
| 6. | Ordering Information                      | 19 |
| 7. | Package Outline                           | 20 |
| 8. | Contact Information                       | 21 |



#### 1. Electrical Characteristics

VDD = 3.3 V,  $T_{OP}$  = 25  $^{\circ}$ C,  $F_{RF}$  = 433.92 MHz, sensitivities are measured in receiving a PN9 sequence and matching to 50  $\Omega$  impedance, with the BER of 0.1%. All measurements are performed using the board RFM210-EM V1.0, unless otherwise noted.

## 1.1 Recommended Operation Conditions

Table 2. Recommended Operation Conditions

| Parameter                | Symbol          | Conditions | Min | Тур | Max | Unit  |
|--------------------------|-----------------|------------|-----|-----|-----|-------|
| Operation Voltage Supply | V <sub>DD</sub> |            | 1.8 |     | 3.6 | ٧     |
| Operation Temperature    | T <sub>OP</sub> |            | -40 |     | 85  | °C    |
| Supply Voltage Slew Rate |                 |            | 1   |     |     | mV/us |

## 1.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings<sup>[1]</sup>

| Parameter                 | Symbol           | Conditions                | Min  | Max            | Unit                 |
|---------------------------|------------------|---------------------------|------|----------------|----------------------|
| Supply Voltage            | $V_{DD}$         |                           | -0.3 | 3.6            | V                    |
| Interface Voltage         | V <sub>IN</sub>  |                           | -0.3 | $V_{DD} + 0.3$ | V                    |
| Junction Temperature      | T <sub>J</sub>   |                           | -40  | 125            | $^{\circ}\mathbb{C}$ |
| Storage Temperature       | T <sub>STG</sub> |                           | -50  | 150            | $^{\circ}$           |
| Soldering Temperature     | T <sub>SDR</sub> | Lasts at least 30 seconds |      | 255            | $^{\circ}$           |
| ESD Rating <sup>[2]</sup> |                  | Human Body Model (HBM)    | -2   | 2              | kV                   |
| Latch-up Current          |                  | @ 85 ℃                    | -100 | 100            | mA                   |

#### Notes:

- [1]. Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device.

  This is a stress rating only and functional operation of the device under these conditions is not implied.

  Exposure to maximum rating conditions for extended periods may affect device reliability.
- [2]. The RFM210 is high-performance RF integrated circuits with VCON/P pins having an ESD rating < 2 kV HBM. Handling and assembly of this device should only be done at ESD-protected workstations.



**Caution!** ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.



# 1.3 Receiver Specifications

**Table 4. Receiver Specifications** 

| Parameter                                      | Symbol                | Conditions                                                                      | Min | Тур  | Max | Unit |
|------------------------------------------------|-----------------------|---------------------------------------------------------------------------------|-----|------|-----|------|
| Frequency Range                                | F <sub>RF</sub>       |                                                                                 | 300 |      | 480 | MHz  |
| Symbol Rate                                    | SR                    |                                                                                 | 0.1 |      | 40  | kbps |
| Consistivity                                   | S <sub>315</sub>      | F <sub>RF</sub> = 315 MHz, SR = 1 kbps, BER = 0.1%                              |     | -114 |     | dBm  |
| Sensitivity                                    | S <sub>433.92</sub>   | F <sub>RF</sub> = 433.92 MHz, SR = 1 kbps, BER = 0.1%                           |     | -113 |     | dBm  |
| Saturation Input Signal<br>Level               | P <sub>LVL</sub>      |                                                                                 |     | 10   |     | dBm  |
| Marking Current                                |                       | F <sub>RF</sub> = 315 MHz                                                       |     | 3.5  |     | mA   |
| Working Current                                | I <sub>DD</sub>       | F <sub>RF</sub> = 433.92 MHz                                                    |     | 3.8  |     | mA   |
| Claan Current                                  |                       | When sleep timer is on                                                          |     | 440  |     | nA   |
| Sleep Current                                  | I <sub>SLEEP</sub>    | When sleep timer is off                                                         |     | 60   |     | nA   |
| Frequency Resolution                           | F <sub>RES</sub>      |                                                                                 |     | 24.8 |     | Hz   |
| Frequency Synthesizer Settle Time              | T <sub>LOCK</sub>     | From XOSC settled                                                               |     | 150  |     | us   |
|                                                |                       | SR = 1 kbps, ±1 MHz offset, CW interference                                     |     | 52   |     | dB   |
| Blocking Immunity                              | ВІ                    | SR = 1 kbps, ±2 MHz offset, CW interference                                     |     | 74   |     | dB   |
|                                                |                       | SR = 1 kbps, ±10 MHz offset, CW interference                                    |     | 75   |     | dB   |
| Image Rejection Ratio                          | IMR                   | IF = 280 kHz                                                                    |     | 35   |     | dB   |
| Input 3 <sup>rd</sup> Order Intercept<br>Point | IIP3                  | Two tone test at 1 MHz and 2 MHz offset frequency. Maximum system gain settings |     | -25  |     | dBm  |
| Receiver Bandwidth                             | BW                    |                                                                                 | 50  |      | 500 | kHz  |
| Receiver Start-up Time                         | T <sub>START-UP</sub> | From power up to receive, in Always Receive Mode                                |     | 4.3  |     | ms   |
| Receiver Wake-up Time                          | T <sub>WAKE-UP</sub>  | From sleep to receive, in Duty-Cycle Receive Mode                               |     | 0.61 |     | ms   |



## 1.4 Crystal Oscillator

## **Table 5. Crystal Oscillator Specifications**

| Parameter                        | Symbol            | Conditions | Min | Тур | Max | Unit |
|----------------------------------|-------------------|------------|-----|-----|-----|------|
| Crystal Frequency <sup>[1]</sup> | F <sub>XTAL</sub> |            | 26  | 26  | 26  | MHz  |
| Crystal Tolerance[2]             |                   |            |     | ±20 |     | ppm  |
| Load Capacitance                 | C <sub>LOAD</sub> |            | 10  | 15  | 20  | pF   |
| Crystal ESR                      | Rm                |            |     |     | 60  | Ω    |
| XTAL Startup Time <sup>[3]</sup> | t <sub>XTAL</sub> |            |     | 400 |     | us   |

#### Notes:

- [1]. The RFM210 can directly work with external 26 MHz reference clock input to XIN pin (a coupling capacitor is required) with peak-to-peak amplitude of 0.3 to 0.7 V.
- [2]. This is the total tolerance including (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing/bandwidth.
- [3]. This parameter is to a large degree crystal dependent.

#### 1.5 LPOSC

#### **Table 6. LPOSC Specifications**

| Parameter                                    | Symbol                 | Conditions        | Min | Тур   | Max | Unit |
|----------------------------------------------|------------------------|-------------------|-----|-------|-----|------|
| Calibrated Frequency <sup>[1]</sup>          | F <sub>LPOSC</sub>     |                   |     | 1     |     | kHz  |
| Frequency Accuracy                           |                        | After calibration |     | 1     |     | %    |
| Temperature Coefficient <sup>[2]</sup>       |                        |                   |     | -0.02 |     | %/°C |
| Supply Voltage<br>Coefficient <sup>[3]</sup> |                        |                   |     | +0.5  |     | %/V  |
| Initial Calibration Time                     | t <sub>LPOSC-CAL</sub> |                   |     | 4     |     | ms   |

#### Notes:

- [1]. The LPOSC is automatically calibrated to the crystal oscillator during the PUP state, and is periodically calibrated since then.
- [2]. Frequency drifts when temperature changes after calibration. [3].

Frequency drifts when supply voltage changes after calibration.



## 2. Pin Descriptions

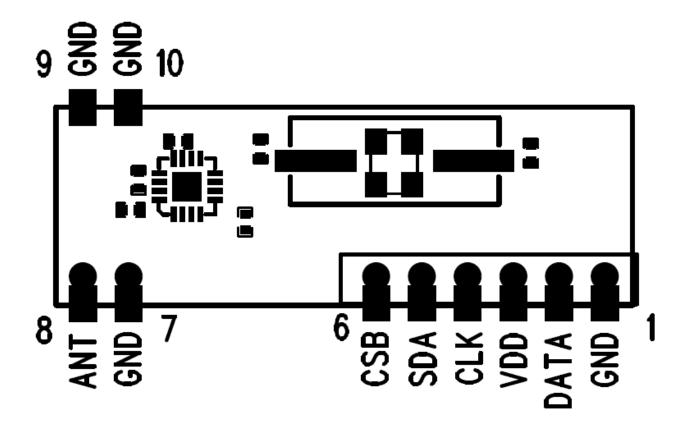



Figure 2. Pin Diagram

Table 6. RFM210 Pin Descriptions

| Pin Number | Name | I/O                                                 | Descriptions                                            |
|------------|------|-----------------------------------------------------|---------------------------------------------------------|
| 1          | GND  | I                                                   | Ground                                                  |
| 2          | DATA | 0                                                   | Received data output                                    |
| 3          | VDD  | I                                                   | Power supply input                                      |
| 4          | CLK  | I                                                   | 3-wire SPI clock input for EEPROM programming           |
| 5          | SDA  | I/O                                                 | 3-wire SPI data input and output for EEPROM programming |
| 6          | CSB  | 3-wire SPI chip select input for EEPR programming I |                                                         |
| 7          | GND  | I                                                   | Ground                                                  |
| 8          | ANT  | I                                                   | RF signal input to the LNA                              |
| 9          | GND  | I                                                   | Ground                                                  |
| 10         | GND  | I                                                   | Ground                                                  |



## 3. Typical Performance Characteristics

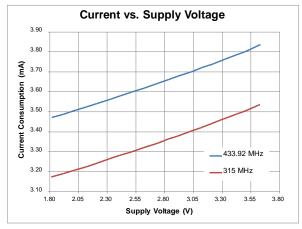



Figure 3.1 Current vs. Voltage,  $F_{RF} = 315 / 433.92 \text{ MHz}$ , SR = 1 kbps

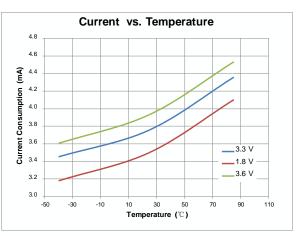



Figure 3.2 Current vs. Temperature,  $F_{RF} = 433.92 \text{ MHz}$ , SR = 1 kbps

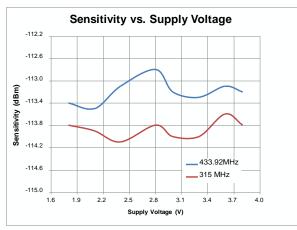



Figure 3.3 Sensitivity vs. Supply Voltage, SR = 1 kbps, BER = 0.1%

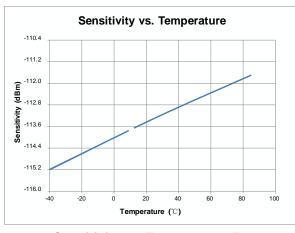



Figure 3.4 Sensitivity vs. Temperature,  $F_{RF}$  = 433.92 MHz,  $V_{DD}$  = 3.3 V, SR = 1 kbps, BER = 0.1%

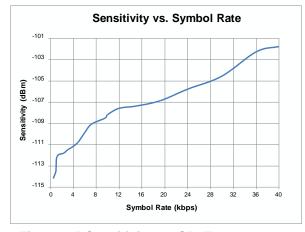



Figure 3.5 Sensitivity vs. SR,  $F_{RF}$  = 433.92 MHz,  $V_{DD}$  = 3.3 V, BER = 0.1%

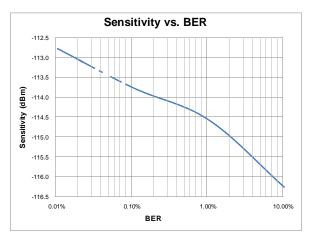



Figure 3.6 Sensitivity vs. BER,  $F_{RF}$  = 433.92 MHz,  $V_{DD}$  = 3.3 V, SR = 1 kbps



# 4. Typical Application Schematic

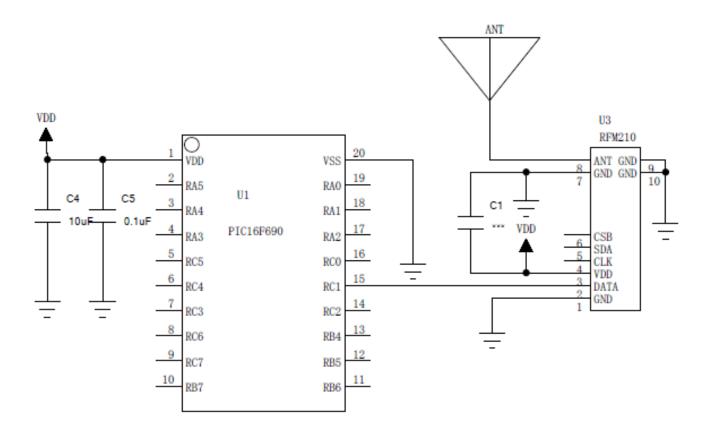



Figure 9: Typical Application Schematic



## 5. Functional Descriptions

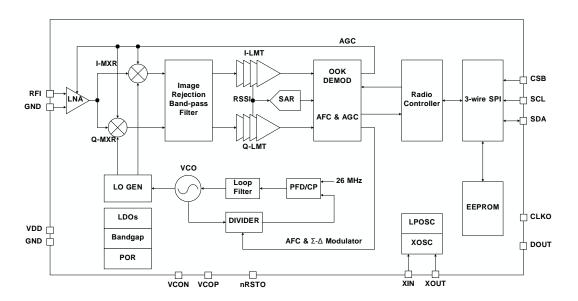



Figure 5. Functional Block Diagram

#### 5.1 Overview

The RFM210 is an ultra low power, high performance, low-cost OOK stand-alone RF receiver for various 300 to 480 MHz wireless applications. It is part of the CMOSTEK NextGenRF<sup>TM</sup> family, which includes a complete line of transmitters, receivers and transceivers. The chip is based on a fully integrated, low-IF receiver architecture. The low-IF architecture facilitates a very low external component count and does not suffer from powerline - induced interference problems. The synthesizer contains a VCO and a low noise fractional-N PLL with an output frequency resolution of 24.8 Hz. The VCO operates at 2x the Local Oscillator (LO) frequency to reduce spurious emissions. Every analog block is calibrated on each Power-on Reset (POR) to the internal reference voltage. The calibration helps the device to finely work under different temperatures and supply voltages. The baseband filtering and demodulation is done by the digital demodulator. The demodulated signal is output to the external MCU via the DOUT pin. No external MCU control is needed in the applications.

The 3-wire SPI interface is only used for configuring the device. The configuration can be done with the RFPDK and the USB Programmer. The RF Frequency, symbol rate and other product features are all configurable. This saves the cost and simplifies the design, development and manufacture. Alternatively, in stock products of 315/433.92 MHz are available for immediate demands with no need of EEPROM programming. The RFM210 operates from 1.8 to 3.6 V so that it can finely work with most batteries to their useful power limits. The receive current is only 3.8 mA. The RFM210 receiver together with the CMT211x transmitter enables an ultra low cost RF link.

#### 5.2 Modulation, Frequency and Symbol Rate

The RFM210 supports OOK demodulation with the symbol rate from 0.1 to 40 kbps. It continuously covers the frequency range from 300 to 480 MHz, including the license free ISM frequency band around 315 MHz and 433.92 MHz. The internal frequency synthesizer contains a high-purity VCO and a low noise fractional-N PLL with an



output frequency resolution of 24.8 Hz. See Table 9 for the demodulation, frequency and symbol rate information.

| Parameter            | Value      | Unit |
|----------------------|------------|------|
| Demodulation         | ООК        | -    |
| Frequency            | 300 to 480 | MHz  |
| Frequency Resolution | 24.8       | Hz   |
| Symbol Rate          | 0.1 to 40  | kbps |

Table 9. Modulation, Frequency and Symbol Rate

#### 5.3 Embedded EEPROM and RFPDK

The RFPDK is a PC application developed to help the user to configure the CMOSTEK NextGenRF<sup>TM</sup> products in the most intuitional way. The user only needs to connect the USB Programmer between the PC and the device, fill in/select the proper value of each parameter on the RFPDK, and click the "Burn" button to program the configurations into the device. The configurations of the device will then remain unchanged until the next programming. No external MCU control is required in the application program.

The RFPDK also allows the user to save the active configuration into a list by clicking on the "List" button, so that the saved configuration can be directly reloaded from the list in the future. Furthermore, it supports exporting the configuration into a hexadecimal file by clicking on the "Export" button. This file can be used to burn the same configuration into a large amount of devices during the mass production. See Figure 6 for the accessing of the EEPROM.

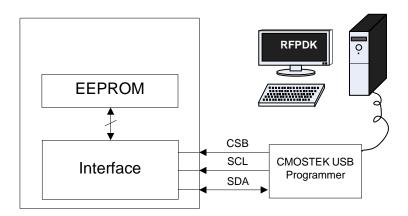



Figure 6. Accessing Embedded EEPROM

For more details of the CMOSTEK USB Programmer and the RFPDK, please refer to "AN103 CMT2110A/2210A One-Way RF Link Development Kits".

#### 5.4 All Configurable Options

Beside the demodulation, frequency and symbol rate, more options can be used to customize the device. The following is a table of all the configurable options. On the RFPDK, the Basic Mode only contains a few options



allowing the user to perform easy and fast configurations. The Advanced Mode shows all the options that allow the user to customize the device in a deeper level. The options in "Basic Mode" are a subset of that in the "Advanced Mode".

**Table 10. Configurable Parameters in RFPDK** 

| Category  | Parameters       | Descriptions                                       | Default      | Mode      |
|-----------|------------------|----------------------------------------------------|--------------|-----------|
|           | Fraguency        | The receive radio frequency, the range is from     | 433.92 MHz   | Basic     |
|           | Frequency        | 300 to 480 MHz, with resolution of 0.01 MHz.       | 433.92 NITZ  | Advanced  |
|           | Demodulation     | The demodulation type, only OOK demodulation       | OOK          | Basic     |
|           | Demodulation     | is supported in this product.                      | OOK          | Advanced  |
|           | Symbol Rate      | The receiver symbol rate, the range is from 0.1    | 4.8 kbps     | Basic     |
| RF        | Symbol Rate      | to 40 kbps, with resolution of 0.1 kbps.           | 4.6 Kbps     | Advanced  |
| Settings  | Squelch TH       | The threshold of the squelch circuit to suppress   |              | Basic     |
| Settings  | Squeich TH       | the noise, the range is from 0 to 255.             | U            | Advanced  |
|           | Xtal Tolerance   | Crystal frequency tolerance, the range is from 0   | ±20 ppm      | Basic     |
|           | Atai Tolerance   | to ±200 ppm.                                       | ±20 ppm      | Advanced  |
|           | Xtal Stabilizing | Time for the device to wait for the crystal to get |              | Basic     |
|           | Time             | settled after power up. The options are: 78, 155,  | 310 us       | Advanced  |
|           | Time             | 310, 620, 1240 or 2480 us.                         |              | Auvanceu  |
|           | Duty-Cycle       | Turn on/off the duty-cycle receive mode, the       | On           | Basic     |
|           | Mode             | options are: on or off.                            | On           | Advanced  |
|           | Cloop Time       | The sleep time in duty-cycle receive mode, the     | 3 ms         | Basic     |
|           | Sleep Time       | range is from 3 to 134,152,192 ms.                 | 31115        | Advanced  |
|           | Rx Time          | The receive time in duty-cycle receive mode, the   | 10,000.00    |           |
|           |                  | range is from 0.04 to 2,683,043.00 ms. The         | (WOR is off) | Basic     |
|           |                  | default value is different when the Wake-On        | or 20.00     | Advanced  |
|           |                  | Radio (WOR) is turned on or off.                   | (WOR is on)  |           |
|           | Rx Time Ext      | The extended receive time in duty-cycle receive    |              |           |
|           |                  | mode, the range is from 0.04 to 2,683,043.00       | 200.00 ms    | Advanced  |
|           |                  | ms.                                                |              |           |
| Operation | Wake-On Radio    | Turn on/off the wake-on radio function, the        | Off          | Advanced  |
| Settings  | Wake Cirradio    | options are: on or off.                            | 0.1          | Advantoda |
|           | Wake-On          | The condition to wake on the radio, the options    | Extended by  |           |
|           | Condition        | are: Extended by Preamble, or Extended by          | Preamble     | Advanced  |
|           | Condition        | RSSI                                               |              |           |
|           | System Clock     | Turn on/off the system clock output on CLKO,       | Off          | Advanced  |
|           | Output           | the options are: on or off.                        | 0.1          | Advanced  |
|           |                  | The system clock output frequency, the options     |              |           |
|           |                  | are: 13.000, 6.500, 4.333, 3.250, 2.600, 2.167,    |              |           |
|           | System Clock     | 1.857, 1.625, 1.444, 1.300, 1.182, 1.083, 1.000,   | 6.5 MHz      | Advanced  |
|           | Frequency        | 0.929, 0.867, 0.813, 0.765, 0.722, 0.684, 0.650,   | 0.0 IVII 12  | Advantood |
|           |                  | 0.619, 0.591, 0.565, 0.542, 0.520, 0.500, 0.481,   |              |           |
|           |                  | 0.464, 0.448, 0.433, 0.419 or 0.406 MHz.           |              |           |



| Category           | Parameters             | Descriptions                                                                                                                                                   | Default              | Mode     |
|--------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| 001                | Demod Method           | The OOK demodulation methods, the options are: Peak TH, or Fixed TH                                                                                            | Peak TH              | Advanced |
|                    | Fixed Demod TH         | The threshold value when the Demod Method is "Fixed TH", the minimum input value is the value of Squelch Threshold set on the RFPDK, the maximum value is 255. | 80                   | Advanced |
| Settings           | OOK Settings Peak Drop | Turn on/off the RSSI peak drop function, the options are on, or off.                                                                                           | On                   | Advanced |
|                    | Peak Drop Step         | The RSSI peak drop step, the options are: 1, 2, 3, 5, 5, 9, 12 or 15.                                                                                          | 2                    | Advanced |
|                    | Peak Drop Rate         | The RSSI peak drop rate, the options are: 1 step/4 symbol, 1 step/2 symbol, 1 step /1 symbol, or 1 step/0.5 symbol.                                            | 1 step /<br>4 symbol | Advanced |
| Decode<br>Settings | Preamble               | The size of the valid preamble, the options are: 1-byte, 2-byte, 3-byte, or 4-byte                                                                             | 2-byte               | Advanced |

#### 5.5 Internal Blocks Description

#### 5.5.1 RF Front-end and AGC

The RFM210 features a low-IF receiver. The RF front-end of the receiver consists of a Low Noise Amplifier (LNA), I/Q mixer and a wide-band power detector. Only a low-cost inductor and a capacitor are required for matching the LNA to any  $50~\Omega$  antennas. The input RF signal induced on the antenna is amplified and down-converted to the IF frequency for further processing.

By means of the wide-band power detector and the attenuation networks built around the LNA, the Automatic Gain Control (AGC) loop regulates the RF front-end's gain to get the best system linearity, selectivity and sensitivity performance, even though the receiver suffers from strong out-of-band interference.

#### 5.5.2 IF Filter

The signals coming from the RF front-end are filtered by the fully integrated 3<sup>rd</sup>-order band-pass image rejection IF filter which achieves over 35 dB image rejection ratio typically. The IF center frequency is dynamically adjusted to enable the IF filter to locate to the right frequency band, thus the receiver sensitivity and out-of-band interference attenuation performance are kept optimal despite the manufacturing process tolerances. The IF bandwidth is automatically computed according to the three basic system parameters input from the RFPDK: RF frequency, Xtal tolerance, and symbol rate.

#### 5.5.3 RSSI

The subsequent multistage I/Q Log amplifiers enhance the output signal from IF filter before it is fed for demodulation. Receive Signal Strength Indicator (RSSI) generators are included in both Log amplifiers which produce DC voltages that are directly proportional to the input signal level in both of I and Q path. The resulting RSSI is a sum of both these two paths. Extending from the nominal sensitivity level, the RSSI achieves over 66 dB



dynamic range.

The RFM210 integrates a patented DC-offset cancellation engine. The receiver sensitivity performance benefits a lot from the novel, fast and accurate DC-offset removal implementation.

#### 5.5.4 SAR ADC

The on-chip 8-bit SAR ADC digitalizes the RSSI for OOK demodulation.

#### 5.5.5 Crystal Oscillator

The crystal oscillator is used as the reference clock for the PLL frequency synthesizer and system clock for the digital blocks. A 26 MHz crystal should be used with appropriate loading capacitors (C2 and C3 in Figure 4, Page 10). The values of the loading capacitors depend on the total load capacitance  $C_L$  specified for the crystal. The total load capacitance seen between the XIN and XOUT pin should equal  $C_L$  for the crystal to oscillate at 26 MHz.

$$C_L = \frac{1}{\frac{1}{C_2} + \frac{1}{C_3}} + C_{parasitic}$$

The parasitic capacitance is constituted by the input capacitance and PCB tray capacitance. The ESR of the crystal should be within the specification in order to ensure a reliable start-up (see Section 1.4 on page 7). An external signal source can easily be used in place of a conventional XTAL and should be connected to the XIN pin. The incoming clock signal is recommended to have a peak-to-peak swing in the range of 300 mV to 700 mV and AC-coupled to the XIN pin.

#### 5.5.6 Frequency Synthesizer

A fractional-N frequency synthesizer is used to generate the LO frequency for the down conversion I/Q mixer. The frequency synthesizer is fully integrated except the VCO tank inductor which enables the ultra low-power receiver system design. Using the 26 MHz reference clock provided by the crystal oscillator or the external clock source, it can generate any receive frequency between 300 to 480 MHz with a frequency resolution of 24.8 Hz.

The VCO always operates at 2x of LO frequency. A high Q (at VCO frequency) tank inductor should be chosen to ensure the VCO oscillates at any conditions meanwhile burns less power and gets better phase noise performance. In addition, properly layout the inductor matters a lot of achieving a good phase noise performance and less spurious emission. The recommended VCO inductors for different LO frequency bands are shown as bellow.

Table 11. VCO Inductor for 315/433.92 MHz Frequency Band

| LO Frequency Band | 315 MHz | 433.92 MHz |
|-------------------|---------|------------|
| VCO Inductor      | 33 nH   | 22 nH      |

Multiple subsystem calibrations are performed dynamically to ensure the frequency synthesizer operates reliably in any working conditions.



#### 5.5.7 LPOSC

An internal 1 kHz low power oscillator is integrated in the RFM210. It generates a clock to drive the sleep timer to periodically wake the device from sleep state. The Sleep Time can be configured from 3 to 134,152,192 ms (more than 37 hours) when the device works in duty-cycle receive mode. Since the frequency of the LPOSC drifts when the temperature and supply voltage change, it is automatically calibrated during the PUP state, and is periodically calibrated since then. The calibration scheme allows the LPOSC to maintain its frequency tolerance to less than ±1%.

## 5.6 Operation Mode

An option "Duty-Cycle On-Off" on the RFPDK allows the user to determine how the device behaves. The device is able to work in two operation modes, as shown in the figure below.

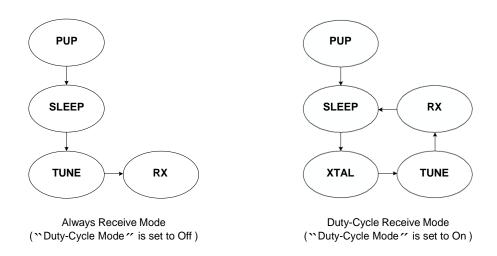



Figure 7. Two different operation modes

#### Power Up (PUP) State

Once the device is powered up, the device will go through the Power Up (PUP) sequence which includes the task of releasing the Power-On Reset (POR), turning on the crystal and calibrating the internal blocks. The PUP takes about 4 ms to finish in the always receive mode, and about 9.5 ms to finish in the duty-cycle receive mode. This is because that the LPOSC and sleep timer is turned off in the always receive mode, while it must be turned on and calibrated during the PUP in the duty-cycle receive mode. The average current of the PUP sequence is about 0.9 mA.

#### **SLEEP State**

In this state, all the internal blocks are powered down except the sleep timer. In Always Receive Mode, the sleep time is fixed at about 3 ms. In Duty-Cycle Receive Mode, the sleep time is defined by the option "Sleep Time" on the RFPDK. The sleep current is about 60 nA in the always receive mode, and about 440 nA (with LPOSC and sleep timer turned on) in the duty-cycle receive mode.

#### **XTAL State**

The XTAL state only exists in the duty-cycle receive mode. Once the device wakes up from the SLEEP State, the crystal oscillator restarts to work. The option "XTAL Stabilizing Time" on the RFPDK defines the time for the device



to wait for the crystal oscillator to settle. The current consumption in this state is about 520 uA.

#### **TUNE State**

The device is tuned to the desired frequency defined by the option "Frequency" on the RFPDK and ready to receive. It usually takes approximately 300 us to complete the tuning sequence. The current consumption in this state is about 2 mA.

#### **RX State**

The device receives the incoming signals and outputs the demodulated data from the DOUT pin. In duty-cycle receive mode, the device only stays in the RX State for a certain amount of time, which is defined by the option "Rx Time" on the RFPDK. The current in this state is about 3.8 mA.

#### 5.7 Always Receive Mode

If the duty-cycle receive mode is turned off, the device will go through the Power Up (PUP) sequence, stay in the SLEEP state for about 3 ms, tune the receive frequency, and finally stay in the RX state until the device is powered down. The power up sequence, which takes about 4 ms to finish, includes the task of turning on the crystal and calibrating the internal blocks. The device will continuously receive the incoming RF signals during the RX state and send out the demodulated data on the DOUT pin. The configurable system clock is also output from the CLKO pin if it is enabled in the Advanced Mode on the RFPDK. The figure below shows the timing characteristics and current consumption of the device from the PUP to RX.

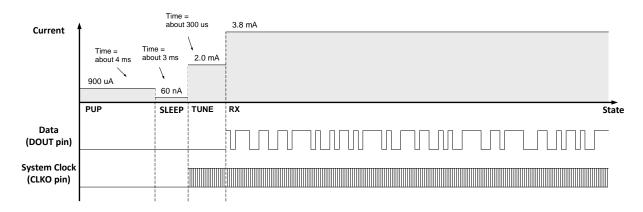



Figure 8. Timing and Current Consumption for Always Receive Mode

## 5.8 Duty-Cycle Receive Mode

If the duty-cycle mode is turned on, after the PUP the device will automatically repeat the sequence of SLEEP, XTAL, TUNE and RX until the device is powered down. This allows the device to re-tune the synthesizer regularly to adept to the changeable environment and therefore remain its highest performance. The device will continuously receive any incoming signals during the RX state and send out the demodulated data on the DOUT pin. The configurable system clock output is output from the CLKO pin during the TUNE and RX state. The PUP sequence consumes about 9.5 ms which is longer than the 4 ms in the Always Receive Mode. This is because the LPOSC, which drives the sleep timer, must be calibrated during the PUP.



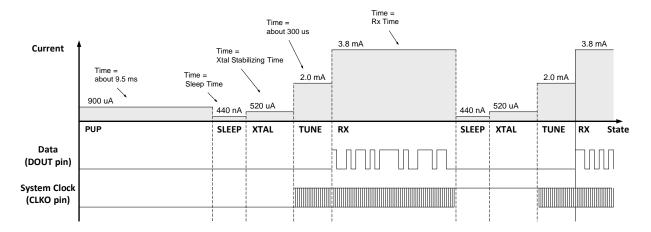



Figure 9. Timing and Current Consumption for Duty-Cycle Receive Mode

It is strongly recommended for the user to turn on the duty-cycle receive mode option. The advantages are:

- Maintaining the highest performance of the device by regular frequency re-tune.
- Increasing the system stability by regular sleep (resetting most of the blocks).
- Saving power consumptions of both of the Tx and Rx device.

As long as the Sleep Time and Rx Time are properly configured, the transmitted data can always be captured by the device.

## 5.9 Easy Duty-Cycle Configurations

When the user wants to take the advantage of maintaining the highest system stability and performance, and the power consumption is not the first concern in the system, the Easy Configuration can be used to let the device to work in the duty-cycle mode without complex calculations, the following is a good example:

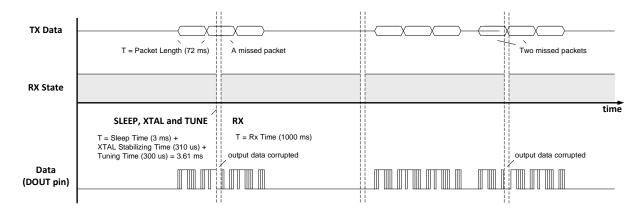



Figure 10. Tx and Rx relationship of Easy Configuration

In this example, the Tx device transmits the data at 1.2 kbps and there are 60 symbols in one data packet. Thus, the packet length is 72 ms. The user can do the following:



- Set the Sleep Time to the minimum value of 3 ms.
- Set the Rx Time to 1 second which is much longer than the packet length.
- Let the Tx device to send out 3 continuous data packets in each transmission.

Because the Sleep Time is very short, the non-receive time is only about 3.61 ms (the sum of the Sleep Time, XTAL stabilizing time and the tuning time), which is much shorter than the packet length of 72 ms. Therefore, this non-receive time period will only have a change to corrupt no more than 2 packets receiving. During the non-receive time period, the DOUT pin will output logic 0.

Because the Rx Time is very long, and 3 continuous data packets are sent in each transmission, there is at least 1 packet that can be completely received by the device and sent out via the DOUT pin with no corruption. The external MCU will only need to observe the DOUT pin status to perform data capturing and further data processing.

If the system power consumption is a sensitive and important factor in the application, the Precise Configuration can be used. Also, based on the duty-cycle receive mode, the "Wake-On Radio" technique allows the device to even save more power. For the precise duty-cycle configurations and the use of wake-on radio, please refer to the "AN108 CMT2210AConfiguration Guideline".



## 6. Ordering Information

# RFM210-433 S1-A/B Xtal Tolerance Package Operation Band Mode Type

P/N: RFM210-315S1-A

RFM210 module at 315MHz band, SMD Package, Xtal Tolerance=+/-200ppm

P/N: RFM210-315S1-B

RFM210 module at 315MHz band, SMD Package, Xtal Tolerance=+/-20ppm

P/N: RFM210-433S1-A

RFM210 module at 433MHz band, SMD Package, Xtal Tolerance=+/-200ppm

P/N: RFM210-433S1-B

RFM210 module at 433MHz band, SMD Package, Xtal Tolerance=+/-20ppm



# 7. Package Outline

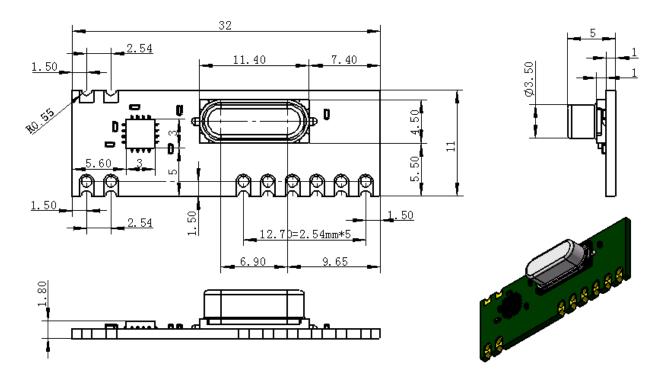



Figure 13 S1 Package Outline Drawi



### 8. Contact Information

#### HOPE MICROELECTRONICS CO.,LTD

Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan

District, Shenzhen, Guangdong, China

Tel: 86-755-82973805
Fax: 86-755-82973550
Email: sales@hoperf.com
Website: http://www.hoperf.com
http://www.hoperf.cn

#### HOPE MICROELECTRONICS CO.,LTD

Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan District, Shenzhen, Guangdong, China

Tel: 86-755-82973805
Fax: 86-755-82973550
Email: sales@hoperf.com
Website: http://www.hoperf.com
http://www.hoperf.cn

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.