

RoHS Recast Compliant Serial ATA Flash Drive

ST170-300 Product Specifications

July 30, 2019 Version 1.0

Apacer Technology Inc.

1F, No.32, Zhongcheng Rd., Tucheng Dist., New Taipei City, Taiwan, R.O.C Tel: +886-2-2267-8000 Fax: +886-2-2267-2261 www.apacer.com

Specifications Overview:

Compliance with SATA Interface

- Serial ATA Revision 3.1
- SATA 6.0 Gbps
- ATA-8 command set
- Backward compatible with SATA 1.5/3.0 Gbps

Capacity

- 30, 60, 120, 240, 480, 960 GB

Performance*

- Burst read/write: 600 MB/sec
- Sequential read: Up to 560 MB/sec
- Sequential write: Up to 500 MB/sec
- Random read (4K): Up to 79,000 IOPS
- Random write (4K): Up to 83,000 IOPS

Flash Management

- Low-Density Parity-Check (LDPC) Code
- Global Wear Leveling
- Flash bad-block management
- Flash Translation Layer: Page Mapping
- Power Failure Management
- S.M.A.R.T.
- Device Sleep
- ATA Secure Erase
- TRIM
- Hyper Cache Technology
- Over-Provisioning
- − DataRAIDTM
- SMART Read RefreshTM

Endurance (in drive writes per day: DWPD)

- 30 GB: 1.59 DWPD
- 60 GB: 1.99 DWPD
- 120 GB: 2.42 DWPD
- 240 GB: 2.57 DWPD
- 480 GB: 2.57 DWPD
- 960 GB: 2.7 DWPD

Temperature Range

Operating: 0°C to 70°CStorage: -40°C to 100°C

Supply Voltage

- 3.3 V ± 5%

Power Consumption*

Active mode: 510 mAIdle mode: 95 mA

Connector Type

- 52-pin mSATA connector

Form Factor

- mSATA, JEDEC MO-300
- Dimensions: 50.80 x 29.85 x 4.85, unit: mm
- Net Weight: 7.21 g
- MTBF: >1,000,000 hours
- NAND Flash Type: 3D TLC (BiCS3)

Shock & Vibration**

Shock: 1,500 GVibration: 15 G

Reliability

- Thermal Sensor

Security

- End-to-End Data Protection
- LED Indicators for Drive Behavior
- RoHS Recast Compliant (Complies with 2011/65/EU Standard)

^{*}Varies from capacities. The values for performances and power consumptions presented are typical and may vary depending on flash configurations or platform settings. The term idle refers to the standby state of the device.

**Non-operating

Table of Contents

1. General Descriptions	4
2. Functional Block	4
3. Pin Assignments	5
4. Product Specifications	7
4.1 Capacity	7
4.2 Performance	7
4.3 Environmental Specifications	8
4.4 Mean Time Between Failures (MTBF)	8
4.5 Certification and Compliance	8
4.6 Endurance	9
4.7 LED Indicator Behavior	
5. Flash Management	11
5.1 Error Correction/Detection	11
5.2 Bad Block Management	11
5.3 Global Wear Leveling	11
5.4 Power Failure Management	11
5.5 ATA Secure Erase	11
5.6 TRIM	12
5.7 Flash Translation Layer – Page Mapping	12
5.8 DEVSLP (DevSleep or DEVSLP) Mode	12
5.9 Hyper Cache Technology	12
5.10 Over-Provisioning	13
5.11 DataRAID [™]	
5.12 SMART Read Refresh TM	13
5.13 SATA Power Management	13
6. Security & Reliability Features	14
6.1 Thermal Sensor	14
6.2 End-to-End Data Protection	14
7. Software Interface	15
7.1 Command Set	15
7 2 C M A D T	47

8. Electrical Specifications	19
8.1 Operating Voltage	19
8.2 Power Consumption	19
9. Physical Characteristics	20
9.1 Dimensions	20
9.2 Net Weight	20
10. Product Ordering Information	21
10.1 Product Code Designations	21
10.2 Valid Combinations	22

1. General Descriptions

Apacer's ST170-300 utilizes 3D NAND for higher capacity up to 960 GB and provides more power efficiency than 2D NAND with compact form factor (mSATA, JEDEC MO-300) and great performance. Designed in SATA 6.0 Gbps interface, the mSATA SSD is able to deliver exceptional read/write speed, making it the ideal companion for heavy-loading embedded or server operations with space constraints for host computing systems. Regarding reliability, ST170-300 is implemented with LDPC (Low Density Parity Check) ECC engine to extend SSD endurance and increase data reliability while reading raw data inside a flash chip. In addition, the drive comes with various implementations including power saving modes, global wear leveling, flash block management, S.M.A.R.T., TRIM, power failure management and Hyper Cache technology.

2. Functional Block

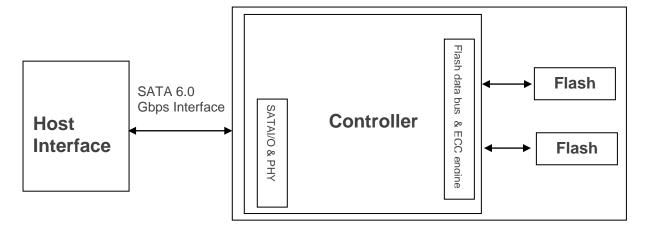


Figure 2-1 Block Diagram

3. Pin Assignments

Pin assignment of the ST170-300 is shown in Figure 3-1 and described in Table 3-1.

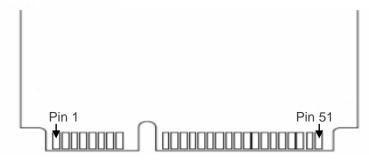
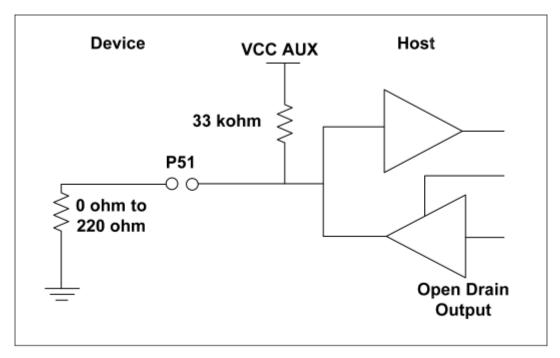



Figure 3-1 Pin Assignment

Table 3-1 Pin Assignment Description

Pin	Type	Description	Pin	Type	Description
1	Reserved	No Connect	27	GND	Ground
2	+3.3V	3.3V source	28	Reserved	No Connect
3	Reserved	No Connect	29	GND	Ground
4	GND	Ground	30	Reserved	No Connect
5	Reserved	No Connect	31	-A	Host Transmitter Differential Signal Pair
6	Reserved	No Connect	32	Reserved	No Connect
7	Reserved	No Connect	33	+A	Host Transmitter Differential Signal Pair
8	Reserved	No Connect	34	GND	Ground
9	GND	Ground	35	GND	Ground
10	Reserved	No Connect	36	Reserved	No Connect
11	Reserved	No Connect	37	GND	Ground
12	Reserved	No Connect	38	Reserved	No Connect
13	Reserved	No Connect	39	+3.3V	3.3V source
14	Reserved	No Connect	40	GND	Ground
15	GND	Ground	41	+3.3V	3.3V source
16	Reserved	No Connect	42	Reserved	No Connect
17	Reserved	No Connect	43	Device Type	No Connect
18	GND	Ground	44	DEVSLP	Device Sleep
19	Reserved	No Connect	45	Reserved	No Connect
20	Reserved	No Connect	46	Reserved	No Connect
21	GND	Ground	47	Reserved	No Connect
22	Reserved	No Connect	48	Reserved	No Connect
23	+B	Host Receiver Differential Signal Pair	49	DAS/DSS	Device Activity Signal/Disable Staggered Spin-up
24	+3.3V	3.3V Source	50	GND	Ground
25	-B	Host Receiver Differential Signal Pair	51*	Detect	0 ohm
26	GND	Ground	52	+3.3V	3.3V source

^{*}Notes about Pin51: It is a presence detection pin that shall be connected to GND by a 0 ohm to 220 ohm Resistor on device. Please see the diagram below.

Bi-directional host-side implementation of P51 for compatibility with nonmSATA devices (informative)

4. Product Specifications

4.1 Capacity

Capacity specifications of ST170-300 are available as shown in Table 4-1. It lists the specific capacity and the default numbers of heads, sectors and cylinders for each product line.

Table 4-1 Capacity Specifications

Capacity	Total bytes*	Cylinders	Heads	Sectors	Max LBA
30 GB	30,016,536,576	16,383	16	63	58,626,288
60 GB	60,021,538,816	16,383	16	63	117,231,408
120 GB	120,033,640,448	16,383	16	63	234,441,648
240 GB	240,056,795,136	16,383	16	63	468,862,128
480 GB	480,103,104,512	16,383	16	63	937,703,088
960 GB	960,196,771,840	16,383	16	63	1,875,385,008

^{*}Display of total bytes varies from file systems, which means not all of the bytes can be used for storage.

LBA count addressed in the table above indicates total user storage capacity and will remain the same throughout the lifespan of the device. However, the total usable capacity of the SSD is most likely to be less than the total physical capacity because a small portion of the capacity is reserved for device maintenance usages.

4.2 Performance

Performance of ST170-300 is listed below in Table 4-2.

Table 4-2 Performance Specifications

Capacity Performance	30 GB	60 GB	120 GB	240 GB	480 GB	960 GB
Sequential Read* (MB/s)	295	550	560	560	560	540
Sequential Write* (MB/s)	125	255	450	490	500	500
Random Read IOPS** (4K)	20,000	39,000	67,000	79,000	78,000	77,000
Random Write IOPS** (4K)	29,000	58,000	77,000	82,000	82,000	83,000

Note:

Results may differ from various flash configurations or host system setting.

^{**}Notes: 1 GB = 1,000,000,000 bytes; 1 sector = 512 bytes.

^{*}Sequential performance is based on CrystalDiskMark 5.2.1 with file size 1,000MB.

^{**}Random performance measured using IOMeter with Queue Depth 32.

4.3 Environmental Specifications

Environmental specifications of ST170-300 product are shown in Table 4-3.

Table 4-3 Environmental Specifications

Item	Specifications
Operating temp.	0°C to 70°C
Non-operating temp.	-40°C to 100°C
Operating vibration	7.69 GRMS, 20~2000 Hz/random (compliant with MIL-STD-810G)
Non-operating vibration	4.02 GRMS, 15~2000 Hz/random (compliant with MIL-STD-810G)
Operating shock	50G, 11ms
Non-operating shock	1500G, 0.5ms (compliant with MIL-STD-883K)

Note: This Environmental Specification table indicates the conditions for testing the device. Real world usages may affect the results.

4.4 Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) is predicted based on reliability data for the individual components in ST170-300. The prediction result for ST170-300 is more than 1,000,000 hours.

Note: The MTBF is predicated and calculated based on "Telcordia Technologies Special Report, SR-332, Issue 2" method.

4.5 Certification and Compliance

ST170-300 complies with the following standards:

- CE
- FCC
- RoHS Recast
- MIL-STD-810

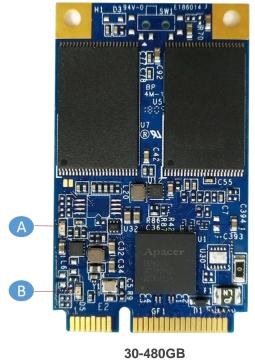
4.6 Endurance

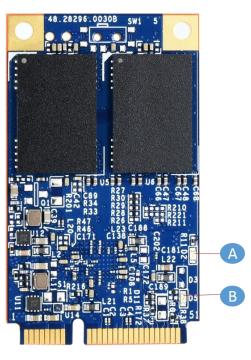
The endurance of a storage device is predicted by Drive Writes Per Day based on several factors related to usage, such as the amount of data written into the drive, block management conditions, and daily workload for the drive. Thus, key factors, such as Write Amplifications and the number of P/E cycles, can influence the lifespan of the drive.

Table 4-4 Endurance Specifications

Capacity	Drive Writes Per Day
30 GB	1.59
60 GB	1.99
120 GB	2.42
240 GB	2.57
480 GB	2.57
960 GB	2.7

Note:


- This estimation complies with JEDEC random client workload.
- Flash vendor guaranteed 3D NAND TLC P/E cycle: 3K
- WAF may vary from capacity, flash configurations and writing behavior on each platform.
- 1 Terabyte = 1,024GB
- DWPD (Drive Writes Per Day) is calculated based on the number of times that user overwrites
 the entire capacity of an SSD per day of its lifetime during the warranty period. (3D NAND TLC
 warranty: 2 years)


4.7 LED Indicator Behavior

The behavior of the ST170-300 LED indicators is described in Table 4-5.

Table 4-5 LED Behavior

Location	LED	Description
LED A	Power	LED glows solidly when power is on
LED B	DAS	LED blinks when the drive is being accessed

960GB

5. Flash Management

5.1 Error Correction/Detection

ST170-300 implements a hardware ECC scheme, based on the Low Density Parity Check (LDPC). LDPC is a class of linear block error correcting code which has apparent coding gain over BCH code because LDPC code includes both hard decoding and soft decoding algorithms. With the error rate decreasing, LDPC can extend SSD endurance and increase data reliability while reading raw data inside a flash chip.

5.2 Bad Block Management

Current production technology is unable to guarantee total reliability of NAND flash memory array. When a flash memory device leaves factory, it comes with a minimal number of initial bad blocks during production or out-of-factory as there is no currently known technology that produce flash chips free of bad blocks. In addition, bad blocks may develop during program/erase cycles. When host performs program/erase command on a block, bad block may appear in Status Register. Since bad blocks are inevitable, the solution is to keep them in control. Apacer flash devices are programmed with ECC, page mapping technique and S.M.A.R.T to reduce invalidity or error. Once bad blocks are detected, data in those blocks will be transferred to free blocks and error will be corrected by designated algorithms.

5.3 Global Wear Leveling

Flash memory devices differ from Hard Disk Drives (HDDs) in terms of how blocks are utilized. For HDDs, when a change is made to stored data, like erase or update, the controller mechanism on HDDs will perform overwrites on blocks. Unlike HDDs, flash blocks cannot be overwritten and each P/E cycle wears down the lifespan of blocks gradually. Repeatedly program/erase cycles performed on the same memory cells will eventually cause some blocks to age faster than others. This would bring flash storages to their end of service term sooner. Global wear leveling is an important mechanism that levels out the wearing of all blocks so that the wearing-down of all blocks can be almost evenly distributed. This will increase the lifespan of SSDs.

5.4 Power Failure Management

Power Failure Management plays a crucial role when power supply becomes unstable. Power disruption may occur when users are storing data into the SSD, leading to instability in the drive. However, with Power Failure Management, a firmware protection mechanism will be activated to scan pages and blocks once power is resumed. Valid data will be transferred to new blocks for merging and the mapping table will be rebuilt. Therefore, data reliability can be reinforced, preventing damage to data stored in the NAND Flash.

5.5 ATA Secure Erase

ATA Secure Erase is an ATA disk purging command currently embedded in most of the storage drives. Defined in ATA specifications, (ATA) Secure Erase is part of Security Feature Set that allows storage drives to erase all user data areas. The erase process usually runs on the firmware level as most of the ATA-based storage media currently in the market are built-in with this command. ATA Secure Erase can securely wipe out the user data in the drive and protects it from malicious attack.

5.6 TRIM

TRIM is a SATA command that helps improve the read/write performance and efficiency of solid-state drives (SSD). The command enables the host operating system to inform SSD controller which blocks contain invalid data, mostly because of the erase commands from host. The invalid will be discarded permanently and the SSD will retain more space for itself.

5.7 Flash Translation Layer - Page Mapping

Page mapping is an advanced flash management technology whose essence lies in the ability to gather data, distribute the data into flash pages automatically, and then schedule the data to be evenly written. Page-level mapping uses one page as the unit of mapping. The most important characteristic is that each logical page can be mapped to any physical page on the flash memory device. This mapping algorithm allows different sizes of data to be written to a block as if the data is written to a data pool and it does not need to take extra operations to process a write command. Thus, page mapping is adopted to increase random access speed and improve SSD lifespan, reduce block erase frequency, and achieve optimized performance and lifespan.

5.8 DEVSLP (DevSleep or DEVSLP) Mode

Device Sleep is a feature that allows SATA devices to enter a low power mode by designating a particular pin as DEVSLP signal with an aim to reducing power consumption.

5.9 Hyper Cache Technology

Apacer proprietary Hyper Cache technology uses a portion of the available capacity as SLC (1bit-percell) NAND flash memory, called Hyper cache mode. When data is written to SSD, the firmware will direct the data to Hyper Cache mode, providing excellent performance to handle various scenarios in industrial use.

5.10 Over-Provisioning

Over-Provisioning (OP) is a certain portion of the SSD capacity exclusively for increasing Garbage Collection (GC) efficiency, especially when the SSD is filled to full capacity or performs a heavy mixed-random workload. OP has the advantages of providing extended life expectancy, reliable data integrity, and high sustained write performance.

5.11 DataRAID™

Apacer's DataRAID algorithm applies an additional level of protection and error-checking. Using this algorithm, a certain amount of space is given over to aggregating and resaving the existing parity data used for error checking. So, in the event that data becomes corrupted, the parity data can be compared to the existing uncorrupted data and the content of the corrupted data can be rebuilt.

5.12 SMART Read Refresh[™]

Apacer's SMART Read Refresh plays a proactive role in avoiding read disturb errors from occurring to ensure health status of all blocks of NAND flash. Developed for read-intensive applications in particular, SMART Read Refresh is employed to make sure that during read operations, when the read operation threshold is reached, the data is refreshed by re-writing it to a different block for subsequent use.

5.13 SATA Power Management

By complying with SATA 6.0 Gb/s specifications, the SSD supports the following SATA power saving modes:

- ACTIVE: PHY ready, full power, Tx & Rx operational
- PARTIAL: Reduces power, resumes in under 10 μs (microseconds)
- SLUMBER: Reduces power, resumes in under 10 ms (milliseconds)
- HIPM: Host-Initiated Power Management
- DIPM: Device-Initiated Power Management
- AUTO-SLUMBER: Automatic transition from partial to slumber.
- Device Sleep (DevSleep or DEVSLP): PHY powered down; power consumption ≤ 5 mW; host assertion time ≤ 10 ms; exit timeout from this state ≤ 20 ms (unless specified otherwise in SATA Identify Device Log).

Note: The behaviors of power management features would depend on host/device settings.

6. Security & Reliability Features

6.1 Thermal Sensor

Apacer Thermal Sensor is a digital temperature sensor with serial interface. By using designated pins for transmission, storage device owners are able to read temperature data.

6.2 End-to-End Data Protection

End-to-End Data Protection is a feature implemented in Apacer SSD products that extends error control to cover the entire path from the host computer to the drive and back, and ensure data integrity at multiple points in the path to enable reliable delivery of data transfers. Unlike ECC which does not exhibit the ability to determine the occurrence of errors throughout the process of data transmission, End-to-End Data Protection allows SSD controller to identify an error created anywhere in the path and report the error to the host computer before it is written to the drive. This error-checking and error-reporting mechanism therefore guarantees the trustworthiness and reliability of the SSD.

7. Software Interface

7.1 Command Set

This section defines the software requirements and the format of the commands the host sends to ST170-300. Commands are issued to ST170-300 by loading the required registers in the command block with the supplied parameters, and then writing the command code to the Command register.

Table 7-1 Command Set

Code	Command		Code		Command
00h	NOP		C9h		Read DMA without Retry
06h	Data Set Management		CAh		Write DMA
10h-1Fh	Recalibrate		CBh		Write DMA without Retry
20h	Read Sectors		CEh		Write Multiple FUA EXT
21	Read Sectors without Retry		E0h		Standby Immediate
24h	Read Sectors EXT		E1h		Idle Immediate
25h			E2h		Standby
27h	Read DMA EXT		E3h		Idle
27h 29h	Read Native Max Address EXT Read Multiple EXT		E4h		Read Buffer
29h 2Fh			E5h		
30h	Read Log EXT Write Sectors		E6h		Check Power Mode Sleep
31h	Write Sectors Without Retry		E7h		Flush Cache
34h	Write Sectors EXT		E8h		Write Buffer
35h	Write DMA EXT		E9h EAh		READ BUFFER DMA
37h	Set Native Max Address EXT				Flush Cache EXT
38h	CFA Write Sectors without Erase		EBh		Write Buffer DMA
39h	Write Multiple EXT		ECh		Identify Device
3Dh	Write DMA FUA EXT	EFh	EFh		Set Features
3Fh	Write Long EXT	EFh		<u>2h</u>	Enable volatile write cache
40h	Read Verify Sectors			<u>3h</u>	Set transfer mode
41h	Read Verify Sectors without Retry	EFh		<u>5h</u>	Enable the APM feature set
42h	Read Verify Sectors EXT	EFh	1()h	Enable use of SATA feature set
44h	Zero EXT	EFh	10h	02h	Enable DMA Setup FIS Auto- Activate optimization
45h	Write Uncorrectable EXT	EFh	10h	03h	Enable Device-initiated interface power state (DIPM) transitions
47h	Read Log DMA EXT	EFh	10h	06h	Enable Software Settings Preservation (SSP)
57h	Write Log DMA EXT	EFh	10h	07h	Enable Device Automatic Partial to Slumber transitions
60h	Read FPDMA Queued	EFh	10h	09h	Enable Device Sleep

Co	ode	Command		Code		Command		
6	1h	Write FPDMA Queued	EFh	55h		Disable read look-ahead		
70h	-7Fh	Seek	EFh	66h		Disable reverting to power-on defaults		
90	0h	Execute Device Diagnostic	EFh	82	2h	Disable volatile write cache		
9	1h	Initialize Device Parameters	EFh	8	5h	Disable the APM feature set		
92	2h	Download Microcode	EFh	90	0h	Disable use of SATA feature set		
93	3h	Download Microcode DMA	EFh	90h	02h	Disable DMA Setup FIS Auto- Activate optimization		
В	0h	SMART	EFh	90h	03h	Disable Device-initiated interface power state (DIPM) transitions		
B0h	D0h	SMART READ DATA	EFh	90h	06h	Disable Software Settings Preservation (SSP)		
B0h	D1h	SMART READ ATTRIBUTE THRESHOLDS	EFh	90h	07h	Disable Device Automatic Partial to Slumber transitions		
B0h	D2h	SMART ENABLE/DISABILE ATTRIBUTE AUTOSAVE	EFh	90h	09h	Disable Device Sleep		
B0h	D3h	SMART SAVE ATTRIBUTE VALUES	EFh	A	Ah	Enable read look-ahead		
B0h	D4h	SMART EXECUTE OFF-LINE IMMEDIATE	EFh	C	Ch	Enable reverting to power-on defaults		
B0h	D5h	SMART READ LOG		F1h		Security Set Password		
B0h	D6h	SMART WRITE LOG		F2h		Security Unlock		
B0h	D8h	SMART ENABLE OPERATIONS		F3h		Security Erase Prepare		
B0h	D9h	SMART DISABLE OPERATIONS		F4h		Security Erase Unit		
B0h	DAh	SMART RETURN STATUS		F5h		Security Freeze Lock		
B0h	DBh	SMART ENABLE/DISABILE AUTOMATIC OFF-LINE	F6h			Security Disable Password		
В	1h	Device Configuration	F8h			Read Native Max Address		
В	4h	Sanitize	F9h			Set Max Address		
C	4h	Read Multiple	F9h	F9h 01h		01h		SET MAX SET PASSWORD
C	5h	Write Multiple	F9h 02h		2h	SET MAXLOCK		
С	6h	Set Multiple Mode	F9h	03	3h	SET MAX UNLOCK		
С	8h	Read DMA	F9h	F9h 04h		SET MAX FREEZE LOCIK		

7.2 S.M.A.R.T.

S.M.A.R.T. is an abbreviation for Self-Monitoring, Analysis and Reporting Technology, a self-monitoring system that provides indicators of drive health as well as potential disk problems. It serves as a warning for users from unscheduled downtime by monitoring and displaying critical drive information. Ideally, this should allow taking proactive actions to prevent drive failure and make use of S.M.A.R.T. information for future product development reference.

Apacer devices use the standard SMART command B0h to read data out from the drive to activate our S.M.A.R.T. feature that complies with the ATA/ATAPI specifications. S.M.A.R.T. Attribute IDs shall include initial bad block count, total later bad block count, maximum erase count, average erase count, power on hours and power cycle. When the S.M.A.R.T. Utility running on the host, it analyzes and reports the disk status to the host before the device reaches in critical condition.

Note: Attribute IDs may vary from product models due to various solution design and supporting capabilities.

Apacer memory products come with S.M.A.R.T. commands and subcommands for users to obtain information of drive status and to predict potential drive failures. Users can take advantage of the following commands/subcommands to monitor the health of the drive.

Code	SMART Subcommand
D0h	READ DATA
D1h	READ ATTRIBUTE THRESHOLDS
D2h	Enable/Disable Attribute Autosave
D4h	Execute Off-line Immediate
D5h	Read Log (optional)
D6h	Write Log (optional)
D8h	Enable Operations
D9h	Disable operations
DAh	Return Status

General SMART attribute structure

Byte	Description
0	ID (Hex)
1 – 2	Status flag
3	Value
4	Worst
5*-11	Raw Data

*Byte 5: LSB

SMART attribute ID list

ID (Hex)	Attribute Name			
9 (0x09)	Power-on hours			
12 (0x0C)	Power cycle count			
163 (0xA3)	Max. erase count			
164 (0xA4)	Avg. erase count			
166 (0xA6)	Total later bad block count			
167 (0xA7)	SSD Protect Mode (vendor specific)			
168 (0xA8)	SATA PHY Error Count			
171 (0xAB)	Program fail count			
172 (0xAC)	Erase fail count			
175 (0xAF)	Bad Cluster Table Count			
192 (0xC0)	Unexpected Power Loss Count			
194 (0xC2)	Temperature			
231 (0xE7)	Lifetime left			
241 (0xF1)	Total sectors of write			

8. Electrical Specifications

8.1 Operating Voltage

Table 8-1 lists the supply voltage for ST170-300.

Caution: Absolute Maximum Stress Ratings – Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.

Table 8-1 Operating Range

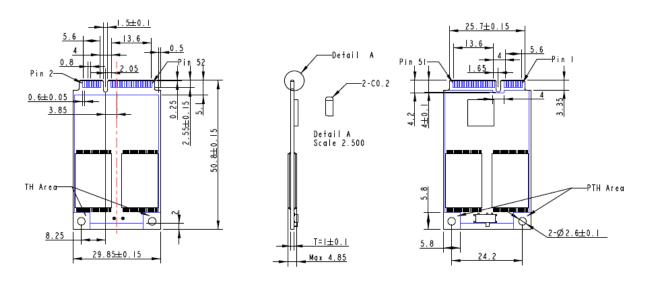
Item	Range
Supply Voltage	3.3V ± 5% (3.135-3.465V)

8.2 Power Consumption

Table 8-2 lists the power consumption for ST170-300.

Table 8-2 Power Consumption

Capacity Mode	30 GB	60 GB	120 GB	240 GB	480 GB	960 GB
Active (mA)	285	385	390	440	455	510
Idle (mA)	95	95	95	95	95	95


Note:

^{*}All values are typical and may vary depending on flash configurations or host system settings.

^{**}Active power is an average power measurement performed using CrystalDiskMark with 128KB sequential read/write transfers.

9. Physical Characteristics

9.1 Dimensions

9.2 Net Weight

Capacity	Net Weight (g)
30GB	4.9
60GB	5.4
120GB	6.4
240GB	6.48
480GB	6.49
960GB	7.21

10. Product Ordering Information

10.1 Product Code Designations

Codo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Coue	Α	7	2		1	7	5	Χ	O	Α		Χ	Χ	Χ	1	1

Code 1 st ~ 3 rd (Product Line & form factor)	SATA + mSATA/ MO300
Code 5 th ~ 6 th (Model/Solution)	ST170
Code 7 th ~ 8 th (Product Capacity)	5F: 30GB 5G: 60GB 5H: 120GB 5J: 240GB 5K: 480GB 5L: 960GB
Code 9 th (Flash Type & Product Temp)	G: 3D TLC Standard temperature
Code 10 th (Product Spec)	A: MO300
Code 12 th ~ 14 th (Version Number)	Random numbers generated by system
Code 15 th ~ 16 th (Firmware Version)	11: DEVSLP + Thermal + OP

10.2 Valid Combinations

Capacity	Part Number
30GB	A72.175FGA.00211
60GB	A72.175GGA.00211
120GB	A72.175HGA.00211
240GB	A72.175JGA.00211
480GB	A72.175KGA.00211
960GB	A72.175LGA.00211

Note: Valid combinations are those products in mass production or will be in mass production. Consult your Apacer sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Revision History

Revision	Date	Description	Remark
1.0	7/30/2019	Official release	

Global Presence

Taiwan (Headquarters)

Apacer Technology Inc.

1F., No.32, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan R.O.C.

Tel: 886-2-2267-8000 Fax: 886-2-2267-2261 amtsales@apacer.com

Japan

Apacer Technology Corp.

6F, Daiyontamachi Bldg., 2-17-12, Shibaura, Minato-Ku, Tokyo, 108-0023, Japan

Tel: 81-3-5419-2668 Fax: 81-3-5419-0018 jpservices@apacer.com

China

Apacer Electronic (Shanghai) Co., Ltd

Room D, 22/FL, No.2, Lane 600, JieyunPlaza, Tianshan RD, Shanghai, 200051, China

Tel: 86-21-6228-9939 Fax: 86-21-6228-9936 sales@apacer.com.cn

U.S.A.

Apacer Memory America, Inc.

46732 Lakeview Blvd., Fremont, CA 94538

Tel: 1-408-518-8699 Fax: 1-510-249-9551 sa@apacerus.com

Europe

Apacer Technology B.V.

Science Park Eindhoven 5051 5692 EB Son,

The Netherlands
Tel: 31-40-267-0000
Fax: 31-40-290-0686
sales@apacer.nl

India

Apacer Technologies Pvt Ltd,

1874, South End C Cross, 9th Block Jayanagar, Bangalore-560069, India

Tel: 91-80-4152-9061/62 Fax: 91-80-4170-0215 sales india@apacer.com