Application Note
Document No.: AN1099
APM32F035 _MOTOR EVAL Sensing Vector

Control Scheme

Version: V1.3

CCCCCCCCCCCCC

http://www.geehy.com/

1.1
1.2

2.1
22

23

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Document No.: AN1099

Contents
General INtrodUCHION ..ot 3
ProjeCt OVEIVIEWttt e e e e e e e e e e e e mneeeaaaaaaaanns 3
APMB32F035 Chip RESOUICES ... 3
Hardware IntroducCtion ..o 5
Overall Hardware CirCUIL ... e e e nnee e 5
Interface Circuits and Settingso 6
Physical System HardWarecooo et 11
Software INtroducCtion ... 12
Overall Program ArchiteCtUre e 12
Introduction to State Machinecooiiiiii e 13
Top-layer Peripheral Configuration ... 14
Calibration Standardizationooviiiiieie e 18
Debugging DevelOPMENTc... et 19
Settings of Key Parameters ... 25
o = Tor= 11 | (o] o 1= USSR 26
Actual test Waveformo 28
ReVISION HISTOIY 29

www.geehy.com Page 2

http://www.geehy.com/

1.1

1.2

Document No.: AN1099

General Introduction
Project Overview

APM32F035 is a specialized chip launched by Geehy Semiconductor Co., Ltd. for motor
control. Based on APM32F035, this design provides a dual-resistance sampling sensing vector
control scheme. The detailed design specifications are shown in the table below:

Table 1 Design Specifications

Control mode Hall Sensor Field Oriented Control (FOC)
PWM modulation mode SVPWM
Angle estimation Hall interpolation compensation algorithm
PWM frequency 8KHz
Motor speed 400~3000RPM (2 pairs of poles)
Protection function Overvoltage, undervoltage, software overcurrent, hardware overcurrent
Code size 11Kbytes
Development software Keil MDK (V5.23 version and above)

APM32F035 Chip Resources

APM32F035 is a high-performance special MCU for motor control which is based on the Arm
Cortex-MO+ core, integrates the mathematical operation accelerators (Cordic, Svpwm,
hardware divider, etc.) commonly used in FOC algorithms, and integrates such analog
peripherals as amplifiers and comparators, as well as CAN controllers.

Table 2 Functions and Peripherals of APM32F035 Series Chip

Product APM32F035
Model c8T7 K8T7
Package LQFP48 LQFP32
Core and maximum working frequency Arm® 32-bit Cortex®-M0+@72MHz
MOCP Co-processor 1
Flash memory (KB) 64
SRAM(KB) 10
32-bit/16-bit universal 1/2
16-bit advanced 1
Timer
16-bit basic 2
24-bit counter 1

www.geehy.com Page 3

http://www.geehy.com/

Document No.: AN1099

Product

APM32F035

Model

C8T7 K8T7

Watchdog (WDT)

2 (1 independent watchdog +1 window watchdog)

Real-time clock

1

USART 2
SPI/12S 11
Communication interface
12C 1
CAN 1
Unit 1
12-bit ADC External channel 16 12
Internal channel 3
Comparator (COMP) 2
Operational amplifier (OPA) 4 2
GPIOs 42 27

Operating temperature

Ambient temperature: -40°C to 105°C
Junction temperature: -40°C to 125°C

Working voltage

2.0~3.6V

www.geehy.com

Page 4

http://www.geehy.com/

Document No.: AN1099

Hardware Introduction
Overall Hardware Circuit

The overall hardware system is powered by an external 24V power supply and after conversion
through the corresponding power step-down circuit, it outputs stable 12V, 5V, and 3.3V
voltages. The 12V voltage is output to the Gate driver IC, the 3.3V voltage is output to the
APM32F035 series microprocessor, and the power switch tube is directly connected to the 24V
power supply. At the same time, this scheme uses a variable resistance knob to adjust the
voltage input of 0~3.3V as the input end of the speed command, to adjust the motor speed.
Users can directly adjust the input voltage by turning the variable resistor knob in actual use.
When the input voltage value exceeds the starting threshold, the motor will start running, and
when the voltage value is below the threshold, the motor will stop running.

Calculate the rotor angular velocity We through six Hall jumps. Hall is used to distinguish six
sectors, and the interpolation compensation algorithm is used to estimate the rotor position and
motor speed. After the motor is started, the APM32F035 processor can obtain the phase
currents lu, lv, and Iw of three phases through the built-in operational amplifier and
corresponding sampling circuit, and convert this data through the coordinate axis to control the
torque current and phase of the motor. After the FOC control calculation link, adjust the TMR1
peripheral to output the corresponding three-way complementary PWM waves to control the
switching components of the inverter.

The hardware block diagram is shown in the figure.

www.geehy.com Page 5

http://www.geehy.com/

2.2

221

Document No.: AN1099

Figure 1 Hardware System Block Diagram

T TTTT T
Power | 24V !
Regulator H Power !
! 1
12V
4
b —
 ——
] L Power
Gate Driver . MOSFET
—
 ——

L

APM32F035

Overcument Brake Current
[.
Detection

MOTOR

A A A

HALL

Interface Circuits and Settings

Power circuit

Figure 2 Power Circuit

T,
iy
@D IN
m
= mwa =
D, @D
v w
T VN BS
cx == Qun al o .
10uF/35V ook 1 EN
—eo m2
1 TP
G

VFB=0.8V

sv aaav
. 13v
v wale v,
= c [ow 3
43 2 .

)

a

+c40

Ticw s
[20EON T~ 2000
D

v

15
15K 1%

D
WIOHUGHCYRISAT

== cs

1006F/25V

As shown in the figure, supply voltage V_BUS =VM/((100K+100K+10K)/10K)=VM/21

www.geehy.com

Page 6

http://www.geehy.com/

Document No.: AN1099 SEMICONDUCTOR

A 12-bit ADC is adopted, and the sampling range 0-3.3V corresponds to 0-4096

Then the maximum sampling voltage corresponding to 3.3V is: VM= 3.3 *21 =69.3V

2.2.2 Phase Current Sampling Circuit

Figure 3 MOSFET Circuit

M

,,
=
{2

Ql

e 7 . - 84 v Q
LHO . HsUDg4s VEL O = |\ HSU0048
(™ g | w o3 (o™ o] W G

U ' v y w

M DL @ RSS o ¥ RO B 26
LAt — Hsuposs YL O —— ~ [N\msuooss BLOGT e " [o\Hsuooss
[{ry -_}
m ’l UL s } m F. VL& ,_} m F. WL i
! FIM v FIM

L= o

VI
R0 Ril
SUM, IRIW =_= D oRow
RID
02RIW
GND

Figure 4 Current Sampling Circuit

VREF=1.65V

As shown in the figure, IU = UI*4.86+1.60

Where 4.86 is the amplification factor of the operational amplifier and 1.6 is the bias voltage.
The derivation process is as follows:

www.geehy.com Page 7

http://www.geehy.com/

Document No.: AN1099

Figure 5 Amplifier circuit diagram

1.65v

D R2
R1

Uin — D— I + Uo
— -
R1
R3
—

R3 is a 10K feedback resistor coupled with an internal 294K resistor, resulting in a combined
resistance of 294K.

According to the virtual short concept, the equation for the positive terminal can be written as:
165 — U+ U+ — Uin 165 — U+ — U+ — Uin

— ——————,whichmeans;: ——"— — ———r—"—
10K 2K R2 R1

Similarly, the negative terminal can be formulated as follows:

Uo - U- v--o0o U0 —U-— — U--0
9.671K —_ 2K , which means: T —_ T

Based on the virtual short: U+ = U-, the final equation can be obtained: 1.604 + 4.86Uin = Uo
Where 1.604 is the bias voltage and 4.86 is the amplification factor.

A 12-bit ADC is adopted, and the sampling range 0-3.3V corresponds to 0-4096

As shown in Figure 3, when the sampling resistance is selected as 0.02R,

Then the maximum peak-to-peak current corresponding to 3.3V is 16.46A = 1.60/4.86/0.02

www.geehy.com Page 8

http://www.geehy.com/

Document No.: AN1099

2.2.3 Hall Detection Circuit

Figure 6 Hall Detection Circuit

PAS SPIl SCK

PA6 SPII MISO

PA7 SPII MOSI

°[Re [Re

+
s
-

PCO HALL A

P2

i
I &
(e} -
& &

PCl HALL.B

PCZ HALLIC

||’—5|

1
2
3
4

Z
=]
Q
Z
=]

C53 |C54 ce0

5

102 102 102 Header 5

2.2.4 Overcurrent protection circuit

Figure 7 Overcurrent Protection Circuit

+3.3V

71
74 IK 1% IBUS
NC i PA3 COMI INP Tbus
PAll TIMI BRIy RIL pap comPl O v _ SUM ==
TR PAL COMI INM RT3 T PB10_OP40, ETe
100R
C62 COMPI ce6l
4700F 109 C64 OP4 =101
10K 1% | 102
= c65
— 0 RT5 -
GND L H PBY OPaN A0 == ‘\-c.x‘n
= K 1% |
GND 102
R76

As shown in the figure, a built-in operational amplifier OPA4 is used to sample the bus current.
A 12-bit ADC is adopted with a sampling range of 0-3.3V corresponding to 0-4096. From Figure
2-3, it can be seen that the sampling resistance is 0.02R,

the output end of OPA4 is used as the reverse input end of COMP1, and resistance voltage
division is adopted at the forward input end. Through simple calculation, it can be concluded
that when the input is 3V,

the maximum current corresponding to 3V is (3-1.65)/5/0.02=13.5A

www.geehy.com Page 9

http://www.geehy.com/

2.2.5

2.2.6

Document No.: AN1099

Minimum system circuit

Figure 8 Minimum System Circuit

us

& PAGCOMPI_OUT/COMPI_INMA/COMP2_INM4 T s a—

PAVCOMPI_INMS/COMPT INMS T L - 1 —
13| PAYOPAL GUTICOMP2_ OUT/ICOMP_INMS

Te| PAVCOMPIINP PBYOPIN

- PAVOPA2 OUT/ICOMP2 INM6 PBUOP2P

Fhe PR3] PAYADCINUSPIL SCK PBSOPIN

PASSPILMEO 18] pAGADC INGSPIIMISO PBSOPIP

w78y 0 PAT/ADC_INV/SPLI_MOSI PBIOPIN
s PAYIIMI_CHI PBYOPP <3-
. PAS/TIMI CHD PBOOPAN (7
2 TTIMTBRINSE] PAIOTIMT
AL AT] TACOMP: our B ¥
RITI0 PAIVSWDIO PBIVTIMI_CHIN
5 LK PAIYSWCLK PBIYTIMI CHIN
PAISOPIP PBISTIMICHIN
n e ah PO CHI fadi—Boy HAL
G —gems——er1 PROVUSARTI_TX/OSC IN PCUTDL_CHY
. —0S0 ol PRYUSARTI RXICT_SMBAOSC_OUT PCY 3
e B2, 1Boo™ 43! poomy
T L m
c3s ==css GND —MRST__ .| NRSTANRST P13
log T4 PCI4OSCH IN
“33V PCI5/05C32_OUT
- L Zwmw vssA
a3V

Vss
1 I_—.° VDDA
. 2 APNGIFO3S_TTI0R

ol x1
1 s
o s B
l) PAl4 SWCLK RS -
2 GND XTALOUT = o ™

As shown in the figure, the utilization of APM32F035 MOTOR EVAL V1.0 board hardware
interface resources is described in the above figure. The external crystal oscillator input of HSE
is 8MHz, and the SWD burning interface is adopted for burning.

Communication Interface and Button Circuit

Figure 9 Communication Interface and Button Circuit

|
D |- useM =C= uss p ACH
3 usev Us8 N FB11 UART) TX
4 12 U 2 RX
=1
@D GD
£33V 33V
7
o - =
3V R17 PCLS Fault PC13 Duection RIE 2 E\'s PC14 LOCE RO 1 &‘“
= ATE i T :
RED C12 13
104 - 104 =]
D D D G

As shown in the figure, a USB-to-serial port and a fault indicator light are reserved in the

www.geehy.com Page 10

http://www.geehy.com/

2.3

Document No.: AN1099

APM32F035 MOTOR EVAL V1.0 board hardware for debugging by developers; the two buttons
are responsible for implementing the functions of controlling the running direction of the motor
and locking.

Physical System Hardware

The picture of the system is shown in the figure, and it mainly includes the following five
interfaces:

(1) Power input interface (connect to 24V; pay attention to positive and negative poles)
(2) Three-phase motor interface (phase sequence only affects the direction of rotation)
(3) HALL input interface

(4) SWD debugging interface

(5) The jumper cap port needs to be connected

Figure 10 Hardware Picture

www.geehy.com Page 11

http://www.geehy.com/

3.1.1

3.1.2

Document No.: AN1099

Software Introduction
Overall Program Architecture

The overall code architecture of this project can be divided into four layers: user layer,
peripheral driver layer, motor control driver layer, and motor algorithm layer. The specific
functional descriptions are as follows:

USER Layer

main.c: The main function entry is responsible for switching motor initialization parameters,
underlying peripherals, interrupt priority, while cycle, and low-speed state machine loop;

apm32f035_int.c: All interrupt handling functions, mainly including TMR1 interrupt function and
ADC interrupt handler function;

user_function.c: Includes initialization configuration, parameter reset, and other handler
functions of motor parameters;

parameter.h: Includes all required configuration parameter information;

Peripheral Driver Layer (HARDWARE Layer)

The peripheral driver layer is mainly responsible for the peripheral driver functions and
configuration of the APM32F035 chip, mainly including GPIO, PWM, ADC, OPA, COMP, and
MOCP coprocessors, as shown in the following figure.

Figure 11 Peripheral Driver Layer

Drv_Ade_lnit ADC initidlization | (tis triggered by OC4 of TIM1 and adapts DMA made)
drv_adc.c == } 9e id i
Drv_Pwm_lnit PWM initializing interface
(Output 6 complementary PWM waves in center alignment mode)

TIM1_PWMOutput Switching PWM interfac
drv_time.c PWM_CompareConfig Configure the duty cycle of TMRT waves

timer2_init Set TMR2 as the capture input

10_Init Initial configuration of all 1/OS
i (Au PWM, OPA, ADG, COMP, LED and ather IO initial configuration)

drv io.c hareware.h Infarmation about all /O canfiguration interfaces

OPA _lInit Initialization interface forthe intemal op amp
drv_opa.c

COMP_Init The intemal comparator initializes the interface

drv_comp.c

MOCP_Fimware_Init The coprocessor initializes the interface

drv_mOcp.c m0cp.h Includes all coprocessor execution functions

MC_SystemClackinit System clock initialization interface
drv_system.c

www.geehy.com Page 12

http://www.geehy.com/

3.1.3

3.14

3.2

Document No.: AN1099

Motor Control Drive Layer (MOTOR_CONTROL Layer)

The motor control driver layer is mainly responsible for the control run logic and core processing
algorithm call of the motor, as shown in the following figure.

Figure 12 Motor Control Driver Layer

Get_ADC_Result ADC data conversion
sin cos cal Find the sin/cos

FOC Ctrl.c —
current_ctrl Current loop control

M1_RunCalibFast

M1_RunReadyFast

s_M1_STATE_RUN_TABLE_FAST M1_RunAlignFast Fast loop state machine

M1_RunSpinFast
M1_RunFreewheelFast
StateMachine.c M1_RunCalibSlow

M1_RunReadySlow

s_M1_STATE_RUN_TABLE SLOW M1_RunAlignSlow Slow loop state machine

M1_RunSpinSlow
M1_RunFreewheelSlow

fault detect anomaly detection
fault.c

Geehy Motor Algorithm Layer (Geehy_MCLIB Layer)

The motor algorithm layer includes coordinate transformation, vector control, and other related
functions, as well as math libraries, angle estimation, and other library functions.

Introduction to State Machine

In this case, the structure of embedding the sub-state machine into the main state machine is
adopted, as shown below:

Four main states: INIT, STOP, FAIL, and RUN;

The six RUN sub-states of the main state are run calib, run-ready, run-align, run-startup,
run-spin, and run-freewheel.

The main state machine is described below:

Fault: When an error occurs in the system, it will remain in this state until the error flag bit is
cleared;

Then after delay for a while, it will jump from the Fault state to the STOP state and wait for the
start command

www.geehy.com Page 13

http://www.geehy.com/

3.3

3.3.1

Document No.: AN1099

Init: This main state executes variable initialization;

Stop: The system waits for the speed command after completing initialization. In this state, the
PWM output is turned off;

Run: When the system is running and there is a Stop command, the system will stop running.

Run-Calib: Executes the current bias ADC self-calibration function. After executing this state,
the system will switch to the Ready state and disable PWM output.

Ready: Enables PWM output, synchronously samples current, and performs abnormal state
checks.

Align: Samples the current, calls the pre-positioning algorithm, and updates PWM. Executes
the state within a specified time, while sampling and filtering the DC bus voltage.

Spin: Samples the current, calls the observer to estimate the rotor speed and position, calls the
corresponding algorithm, updates PWM, and the motor starts closed-loop operation.

Freewheel: Enables PWM output and uses short-circuit braking to stop the motor. Due to rotor
inertia, it is necessary to wait until the motor stops running before switching to the Ready state.
If an error occurs, it will enter the Fault state.

Top-layer Peripheral Configuration

PWM Output Configuration

void Drv_Pwm_lInit(uint16_t u16_Period,uint16_t u16_DeadTime)
(1) The general configuration of PWM is as follows:

Set the PWM clock frequency division to 1, select the center-aligned mode 2, and set the repeat
counter to 1, as shown in the figure below.

Figure 13 General Configuration of PWM

/* - Time - Base -configuration: ,init timel . freg*/
--TIM TimeBaseInitStructure.period. - .- - - - =-ul6 Period;
- -TIM TimeBaseInitStructure.div- - - - - - - -=-0;
--TIM TimeBaseInitStructure.counterMode - - - - - - ={'EHR COUNTER MODE CENTERALIGNEDZ;
- +TIM TimeBaseInitStructure.clockDivision - . -=.-TMR CKD DIV1;

- TIM TimeBaseInitStructure.fepetitionCounter = 1; |
- TMR_ConfigTimeBase (TMR1, &TIM TimeBaseInitStructure);

www.geehy.com Page 14

http://www.geehy.com/

Document No.: AN1099

Figure 14 Center-aligned Mode Selection

Center-Aligned-Mode-Select «

In-the -Center-aligned-mode, -the-counter-counts-up-and-down-alternately; -

otherwise, -it-will-only-count-up-or-down.-Different-Center-aligned-modes-

affect-the timing-of-setting-the-output-comparison-interrupt-flag-bit-of the-

output-channel-to-1;-when-the-counter-is-disabled-(CNTEN=0),-select-the-

Center-aligned-mode.

00:-Edge-alignment-mode «

01:- Center-aligned- mode- 1- (the- output- comparison- interrupt- flag- bit- of-
output-channel-is-set-to-1-when-counting-down)

10:- Center-aligned- mode- 2- (the- output- comparison- interrupt- flag- bit- of-
output-channel-is-set-to-1-when-counting-up)+

11:- Center-aligned- mode- 3- (the- output- comparison- interrupt- flag- bit- of-
output-channel-is-set-to-1-when-counting-up/down) <

(2) PWM Output Status Configuration

Set the output status of the upper and lower tubes of PWM and enable the configuration of
PWM output of the upper and lower tubes to be effective,

Configure the enabled brakes, configure the brake polarity, disable the automatic output, and
prevent automatic PWM output in the next update event.

Figure 15 PWM Output Status Conflguratlon
/* -Automatic-Output -enable, -Break, -dead-time - -and-lock -configuration®*/
TIM BDTRInitStructure.RMOS_State TMR_RMOS_STATE ENABLE;
TIM BDTRInitStructure.IMOS State TMR_IMOS STATE ENABLE;
TIM BDTRInitStructure.lockLevel IMR LOCK LEVEL OFF;
TIM BDTRInitStructure.deadTime ulé DeadTime;//

n-low-level

-Disable -MOE -bit -hardware - -control

TIM BDTRInitStructure.breakState = -TMR BREAK STATE ENABLE;

TIM BDTRInitStructure.breakPolarity = -TMR_BRERK POLARITY LOW;

TIM BDTRInitStructure.automaticOutput -= TMR AUTOMATIC OUTPUT_DISABLE:
TMR ConfigBDT (TMR1, -&TIM BDTRInitStructure):

/*pwm-driver - -set, channel-1,2,3,4set -pwm mode*/

TIM OCInitStructure.OC Mode TMR_OC_MODE PWM2:
TIM OCInitStructure.OC OutputState TMR OUTPUT_STATE_ENABLE: -| //TMR_OUTPUT_ STATE DIS
TIM OCInitStructure.OC OutputNState TMR OUTPUT NSTATE ENABLE;
TIM OCInitStructure.Pulse 1K
TIM OCInitStructure.OC Polarity
TIM OCInitStructure.OC NPolarity
TIM OCInitStructure.OC TIdlestate
TIM OCInitStructure.OC NIdlestate

THE_OC_FOLARITY HIGH;
TMR_OC_NPOLARITY HIGH; |//
TMR_OCIDLESTATE RESET; | //-TM
TMR_OCNIDLESTATE RESET:| // TMR

www.geehy.com Page 15

http://www.geehy.com/

3.3.2

Document No.: AN1099

Figure 16 Timing Diagram of PWM2 Center-aligned Mode

O0CxREF | I

In count-up mode, when TMR1_CNT<TMR1_CCR1, Channel 1 is invalid level; otherwise it is
valid level;

In count-down mode, when TMR1_CNT>TMR1_CCR1, Channel 1 is a valid level; otherwise it

is an invalid level.

ADC Configuration

void Drv_Adc_Init(void)
(1) ADC underlying configuration

DMA mode is adopted, and the quantized data of ADC is directly transported to the
ADC_ConvertedValue array for storage. The ADC trigger condition uses CC4 of TMR1 as the
trigger source, to enable ADC and configure ADC interrupt priority and its enable. Details are
shown below:

www.geehy.com Page 16

http://www.geehy.com/

Document No.: AN1099

void Drv_Adc_Init(void)

{

i

- -BADC Config T- -

- ADC_
.. .aDC_
-.aDC_
.. .aDC_
..aDc_
. .ADC

DMA Config T

ADC InitStructure;
DHE InitStructure;
--DMA TnitStructure.
DHMA InitStructure.
--DMA TnitStructure.
DHMA InitStructure.
--DMA_TnitStructure.
- -DMA InitStructure.
- -DMR TnitSTructure.
- DMA TInitStructure.
- -DMA_TInitStructure.
--DMA TnitStructure.
DMA InitStructure.
- -ADC Reset():
DMA Config(DHMA CHANNEL 1, -&DMA InitStructure);
. DMA Enable (DMA CHANNEL 1);

peripheralfddress -
memoryiddress
direction -- - -
bufferSize
peripherallnc
memoryIne: - - - -
peripheralDataSize
memoryDataSize - - - -
circular- - - - -
priority.-
memorylomemory

Figure 17 ADC Underlying Configuration

(uint32_t)& (ADC->DATR) ;//RDC -address

{uint32_t)&ADC ConvertedValue[0]; - //memory-address

DME DIR PERIPHERAL; -//Direction- (from peripherals to memory)

TOTAL_CHANNEL;//TOTAL CHANWNEL; -//The size of the transferred content -- the number of transfers
DME_PERIPHERAL_ INC | DISABLE //The -peripheral -address-is-fixed

DMA MEMORY INC ENABLE;//DMA MEMCRY INC ENABLE;

DMA PERIPHERAL DATASIZE HALFWORD ;- //PEIlp1EIa1 data - -unit

DMA MEMORY DATASIZE HALFWORD- -/ /Memory -data -unit
DHA_CIRCULAR_ENABLE--:-//DMA-mode:-cyclic-transmission

DMA_ PRIORITY LEVEL VERYHIGH ; //Priority:-High

DMA M2M DISABLE; /{HMemory to memory-transmission-is-disabled

//Configure -channel -1-for -DMA

ADC ClockMode (ADC CLOCE MODE_ASYNCLK) ;//48M/4=12mADC_CLOCE MODE SYNCLEDIV4

InitStructure.
InitStructure.
Init5tructure.
InitStructure.
- -BADC Config(&ADC ImitStructure);

convMode -
scanDir - -

- -ADC_ConfigStruccInic (&ADC InitStructure);
InitStructure.
InitStructure.

- = ADC_CONVERSION_SINGLE:
--= ADC SCAN DIR UPWARD;

extTrigConvl -=|-ADC EXT TRIG CONV_TRGI1; - /- -timerl-CC4
extTrigEdgel = H

datalklign: - -= ADC | DATA ALIGN RIGH'[

resolution- -= ADC_RESCOLUTION_12B:

| 2DC ConfigChannel (ADC CHAWNEL 2 | ADC CHANNEL 8 | ADC CHANNEL S | ADC CHANNEL 7 ,ADC SAMPLE TIME 1 5);|

- -ADC->CFGL B.OVEMAG = 1;

ADC Enablelntezzupt(ADC INT_C5):

DC-interrupt

- “ADC_EnableDMA();
- -ADC Enable(): -
--ADC_StathonveIsiDn(};//Gotta-start-i:-up

"NVIC_EnablelRQ(ADC_COMP_IRCn) ;
‘NVIC_SetPriority (ADC_COMP_IRQn

3.3.3 OPA and COMP Underlying Configuration

(1) OPA underlying configuration

To configure the underlying configuration of OPA, first configure the OPA pin, DISABLE the
operational amplifier OPA, configure to use an external resistor network, and then ENABLE it,
as shown in the figure below;

Figure 18 OPA Underlying Configuration

void OPA Init(void)

{

OPA Disable (CPAl):;

OPA_ Disable (CPA2);

OPA_Disable (CPA3);

OPA Disable (OPA4);

OPA_SelectGainFactor (OPAl,CPA GAIN FACTOR 0):
OPA_SelectGainFactor (OPA2,C0PA GAIN FACTOR 0):
OPA_SelectGainFactor (OPA3,CPA GAIN FACTOR 0):
OPA SelectGainFactor (OCPA4,OPA_GAIN FACTOR _0):
OPA_Enable (OPAl);

OPA_Enable (OPA2);

OPA_Enable (OPA3);

OPA_Enable (OPA4);

(2) COMP underlying configuration

COMP is used for overcurrent anomaly detection. To configure the underlying configuration of
COMP, first configure the COMP pin, set the COMP output to the BKIN connected to TMR1, set

www.geehy.com

Page 17

http://www.geehy.com/

Document No.: AN1099

the output reverse, and trigger the BKIN of TMR1 at a low level, as shown in the following
figure;

Figure 19 COMP Underlying Configuration

void COMP Init (void)
{
COMP Config T compConfig;
' -Configure -COMP1 - */
COMP_ConfigStructInit (&compConfig):
compConfig.invertingInput = -COMP INVERTING INPUT PAl;

compConfig.output =|COHP QUTPUT TIHlBKIN;l
compConfig.outputPol =-COMP_OUTPUTPCL NONINVERTED;
compConfig.hysterrsis = COMP_HYSTERRSIS NO;

compConfig.mode COMP MODE HIGHSPEED;
COMP_Config (COMP_SELECT COMP1, &compConfig):
/* .Enable -COMP2 - */

COMP Enable (COMP_SELECT COMP1);

3.4 Calibration Standardization
3.4.1 Concept of Per Unit
There are typically two methods to define the magnitude of a variable:
Firstly, the nominal value: the value obtained from measuring the variable using instruments
and meters. This employs the International System of Units (SlI), voltage (V), current (A), and
rotational speed (r/min).
Secondly, the per unit value: the nominal value divided by the reference value. This uses the
per-unit system (p.u).
Advantages of the per-unit system include compatibility with fixed-point MCU operations and
prevention of data overflow, among others.
3.4.2 Per Unitization of the Entire System Software
All are calibrated to the Q15 format.
Firstly, voltage calibration: based on the actual maximum measurable bus voltage as the
reference value, it is mapped to a voltage range of 0-3.3V at the actual ADC pin. The
corresponding mapping in the program is 0-32767, as shown in the figure below:
Figure 20
S *Voltage Sampling®/
#define UDC MAX [65.0L) A o anic:v Max DC Voltage of Hardware
$defin= DCBUS_OVER Q15(48.0£/UDC_MAX) /f unit:V
$defins DCBUS_UNDER Q15(20.0£/UDC_MAX) // unit:v

www.geehy.com Page 18

http://www.geehy.com/

Secondly, current calibration: based on the actual maximum measurable bus current as the
reference value, the voltage mapped to the actual ADC pin is 0-3.3V, and the corresponding
mapping in the program is 0-32767

Document No.: AN1099

Figure 21

#define - IGAIN Q10 (2113)

Thirdly, angle calibration: 0~ 1= 0- 32767

Fourthly, speed calibration: based on the actual rated speed, select the appropriate speed
reference value, and the corresponding mapping in the program is 0-32767

Figure 22
T ine SPEED CALTBRATION (S000.0f) S unit:rpm rated speed of motor
¥ 1= MAX SPEED (MAX REM) S unit:rpm max speed of motor
= ine OVER_SPEED VALUE Ql5(3500.0£/5PEED CALIERATICHN)

3.5 Debugging Development

3.5.1 Hardware Confirmation

Firstly, it is necessary to verify that the hardware of the board is functioning properly. After the
initial power-up, use an oscilloscope to check whether the voltage points on the hardware board
are stable (12V, 5V, 3.3V, etc.), and measure if points such as IV, IU, and IBUS have a DC bias
voltage of 1.60V, as shown in the hardware schematic below.

www.geehy.com Page 19

http://www.geehy.com/

3.5.2

Document No.: AN1099

Figure 23

o
3
4
@
7]
2

APM32F035 MOTOR EVAL V1.0

Peripheral Configuration

Verify the configuration of the motor's hardware peripheral pins, such as the MOCP co-
processor, the PWM wave generation configuration of TMR1, the capture configuration of
TMRZ2, the ADC sampling port configuration, the initialization of the op-amp OPA ports, and the
configuration of the comparator COMP. Moreover, implement the core feature of utilizing both
COMP and TMR1 in cascade to enable the braking function (i.e., hardware overcurrent
protection feature; details can be referenced in the schematic diagram). The details are as
follows: (Note: The specifics of each detail are not elaborated here and should be cross-
referenced with the schematic diagram and the configuration files for each peripheral.)

Figure 24

L f% . MOCP- .- -%/
- MOCP_Firmware Init ()},
- 'RCM_EnableAHBPeriphReset (RCM AHB PERIPH MOCP):
- RCM_DisableAHBPeriphReset (RCM_RHBE PERIPH MOCFE):
- RCM EnableAHBPeriphClock (RCM AHBE PERIPH MOCFP);
- MOCP_HardInit():
- -*({wvolatile unsigned- -int*) (0x4002400040x10) -=-0;
J,I-':IILiERl -J,-f
- Drv_Pwm Init (PWM PERICD,DEAD TIME):
- -PWM_CompareConfig (PWM_PERIOD, - PWM_PERIOD, - PWM_PERIOD) ;
- -f*. .TIMERZ -for -hall-capture- - - - - o
- timer2 init(TIM2Z PRIOD, TIM2 PSC LOAD): - -//The overflow period is. l00ms
. _."f CLADC - - _.l'f
- Drv_Adc Init{):
. J,u' . .0PLA- - -) J,u'
- OPR_Init():
J,I-CC.ILiP -J,-f
-~ COMP_Init():
S fE L GRIO e 5/
IO Inmit();
.. f*. .S¥YSTICK- .- - - - ¥
- Systick Init (SystemCoreClock ./ -1000) ;

www.geehy.com Page 20

http://www.geehy.com/

3.5.3

354

Document No.: AN1099

Motor Parameter Configuration

The first two steps mainly involve checking the hardware and peripheral configuration to ensure
the stability and accuracy of the hardware foundation before starting the motor tuning process.

Open the "parameter.h" configuration file; this file is of paramount importance as most of the
modifications will be done here. Emphasize this part! Firstly, it is essential to verify the motor
parameters.

This section primarily introduces the development of sensor-equipped Field Oriented Control
(FOC), and therefore, it is necessary to check the motor's pole pair number, rated speed,
current limit (considering the motor's power), and calibration speed (evaluating the rated
speed), as shown in the figure below.

(Note: It is worth mentioning that sensor-equipped FOC does not require the use of an
observer, so there is no need for the motor's phase resistance, phase inductance, and other
parameters. In contrast, for sensorless FOC, it is typically necessary to know the motor's phase
resistance, phase inductance, and even the back electromotive force constant, etc.)

Figure 25

105 | #defi WVER_SPEED_VALUE

107 | #define FREQ2RPM Q2

110 #$define SPD_EI_'_ZHZT {1.82) unit:A Speed-PI-output-limitation

109 | #define -MAX DUTY (0.95f)

Tuning and Confirmation of Pl Parameters for the Current Inner Loop

Here comes the critical part!

During the Align state, you should debug by adjusting the Pl parameters of the current loop
under the DQ axis (as shown in the figure below, generally the DQ axis uses the same PI
parameters). Similar to the Q axis shown, by setting the Iq_cmd (which can be given a direct
value or set with a ramp to specify a certain acceleration and value), you can determine
whether the current Pl parameters are appropriate by observing whether the Vq output can
quickly and stably settle, and also by checking if the given Ig_cmd and the actual Iq waveform
data can follow suit. An example waveform is shown in the figure.

(Note: Normally when tuning PI, you start from small to large, first adjusting KP and then
adding Kl for debugging. For specific methods, you can refer to online resources.)

www.geehy.com Page 21

http://www.geehy.com/

3.55

Document No.: AN1099

Figure 26
112
113
114 (4000) £
115 (0) £
116 (400) £
117 (0) £
118 (4000) b o
118 (0) £
120 #d (400) £
121 | #define (0) 5. for
Figure 27
2,250
2,200
2,150 h
2,100
500 LN VTR YT TR TV WY WYY [P TV Y N OaT 1 [Ty W17
7950 W T \1|'\” b A b UL LR Y L T
13%

Value(s)
@
3

225 230 235 240 245 250 255 260 265 270 275 280 285 290
Time (s)

® Motor_type.Focstc_ldg.s16q15_Q Motor_type.Focstc_IdgCmd.s16g15_Q ® Motor_type.Foc.stc_Vdq.s16q15_Q

Self-Check of HALL Angle

When the current inner loop Pl parameters are already appropriate, it indicates that the pre-
positioning function can be used; therefore, the self-check function of the HALL phase
sequence should be enabled.

Still in the "parameter.h” configuration file, enable the "HALL_PHASE_TEST" macro to activate
the self-check function for the HALL phase sequence. Let's introduce the role of the HALL
phase sequence: the difference in HALL phase angle is 60°, meaning it can output six angle
points, similar to the sequence of HALL values output in a clockwise (CW) direction, such as 2-
6-4-5-1-3. (Note: You can first test the HALL sequence order to see if it is consistent with the
sequence given in the program by manually rotating the motor one turn to observe the actual
HALL values read. Confirm the sequence of HALL values for both CW and counterclockwise
(CCW) rotations, and verify the corresponding HALL phase sequence. For example, if the
sequence read is 6-4-5-1-3-2, which matches the preset sequence, then there is no need for
modification. However, if a sequence like 6-4-1-5-2-3 is observed, which does not match the
sequence in the program, enter this sequence into the arrays u8CW_Hall_Value and
u8CCW_Hall_Value in the user_function.c file. Also, correspondingly fill in the CW_hall_table

www.geehy.com Page 22

http://www.geehy.com/

Document No.: AN1099

and CCW_hall_table arrays.

u8CW _Hall_Value[6]: Represents the actual Hall sequence; note the relationship between the
Hall sequence and the angle sequence.

CW _hall_table[8]: The sequence of Hall values at the prior position. For example, in the
program, the prior position to Hall value 1 is Hall value 5; thus, CW_hall_table[1] = 5, and the
prior position to Hall value 2 is Hall value 3; thus, CW _hall_table[2] = 3.

And so on: uBCW_Hall Value[6] ={1, 3, 2, 6, 4, 5}, corresponding to CW_hall_table[8] = {0, 5,
3,1,6, 4,2, 0}; uBCW_Hall_Value[6] ={2, 3, 1, 6, 4, 5}, corresponding to CW_hall_table[8] = {0,
3,5,2,6,4,1,0}).

Figure 28
The - following-is-the -normal -HALL-phase sequence, ‘which can-be modified-according-to-the actual motor -situation:-*/
uint8 t u8CW_Hall Value[¢] = {1,3,
uint8 t u8CCW_Hall Value[€] = {1,5,4,6,2,3}:
uint8_t CCW_hall table[8] =-{0,3,6,2,5,1,4,0};
uint8_t CW_hall table[8] =-{0,5,3,1,6,4,2,0};

Furthermore, the focus comes again! There is indeed an installation angle deviation between
the actual position of the HALL sensor and the corresponding mechanical angle of the motor,
which is the machine angle deviation angle. The self-check function of the HALL sequence is
designed to calculate this deviation angle and match the actual angle corresponding to the
HALL value accordingly. As shown in the figure, after enabling the macro
"HALL_PHASE_TEST," enter the debug mode and observe the related member variables of the
structure "stc_align_hall." Implement the configuration functions "Align_HallCal_Phase_Init" and
"Align_HallCal_Phase." The main modifications to the core parameters involve setting the
positioning time and positioning Iq current, as well as setting the offset angle (if the detected
angle is abnormal, the value can be adjusted appropriately. The recommended offset angle is 0
"0°"or 5461 " 30°”). For example, in "stc_align_hall," "u8Dir" indicates direction, and
"s16CW_arr_HallPhase_Cal" and "s16CCW_arr_HallPhase_Cal" are used to generate the
calculated HALL phase angle sequence table, which must be filled into the array lists
"s16CW_arr_HallPhase" and "s16CCW _arr_HallPhase" in the file "user_function.c." As shown
in the figure.

Figure 29

© HALL_PHASE_TEST
L PHASE ALIGN TIME MS
1_PHASE_ALIGN_TO_CMD

www.geehy.com Page 23

http://www.geehy.com/

3.5.6

$define M1_SPEED KI_Q10

Document No.: AN1099

= i u8Dir 0x20000238 0" uchar(2]
% stc_align_hall 0x20000218 &ste_alig... | struct <untagged> v (0] 1 uchar
¢ uBHallThetaSwitchState 0 uchar ¢ 0 uchar
15 UBCW_Hall Refer_Value 0x20000219*00 000" | uchar{6]
= v
i 45 uBCCW_Hall_Refer_Value uchar[6] MGSI?WLWF’F'EC‘-KHZ ! ushort
i3 usAlignHallValue uchar(6] ¢ ul6AlignTime_ms 0 ushort
¢ 0] 2 uchar ¥ u32AlignTimeCnt 5000 uint
° 1 6 uchar ¢ s16q15Alignigemd 1990 short
¢ 2 4 uchar
2 = ¥ s16ThetaOffset -5461 short
v Bl 5 uchar
o : pos % s16CW_arr_HallPhase_Cal 0x20000248 short[8]
¢ 151 3 uchar ? [0 [short
$ uBSubdivideHallValue 0x20000228 uchar(13)] ¢ 14564 short
o 2 ochae ¢ 12 7280 short
v 2 uchar
v 2 uchar v 3l -3642 short
¢ 3 2 uchar v (4 29124 shert
Gl : i ¢ 131 -25488 shert
v 15 2 uchar
¢ 16) > —— v (6] 18202 short
*m 2 uchar v (7] 0 short
v (8] 6 uchar =Bt s16CCW_arr_HallPhase_Cal 0x20000258 short[8]
¢ 9] 6 uchar 70) <hort
g 5 pchae ¢ 29127 short
¢ 6 uchar
¢ 12 6 uchar v 12 -14565 short
1 u8Dir 0x20000238 "0 uchar(2] v 3] -25487 short
¢ 10 1 uchar v 4 7279 short
*m 0 uchar
¢ ul6SlowLoopFreq KHz 1 ushort v B3 18203 short
¢ ul6AlignTime_ms 0 ushort v (6] -3643 short
¢ u32AlignTimeCnt 5000 uint v m 0 short
¢ s16q15Alignigemd 1990 short <Ehtererpressio
@ s16ThetaOffset -5461 short "
41 intle t -s16CW arr HallPhase[8] -=-{0,-14564,72
42 intlé t sl6CCW arr HallPhase[8] -= {0, =1

Speed Loop Parameter Tuning

Once the HALL phase sequence angle table has been acquired and entered, you need to
proceed to the "parameter.h" configuration file and first turn off the "HALL_PHASE_TEST"
macro parameter, disabling the HALL self-check mode. At this point, you're ready to try and get
the motor running for a test!

Adjust the speed knob on the hardware board, and under normal circumstances, the motor
should start running. If it does not start, you'll need to backtrack and verify the previous steps to
identify any anomalies. If the motor runs but the speed is unstable, then you've reached a
crucial point! Start taking notes! When the speed is unstable, you will need to further adjust the
speed loop's Pl parameters and verify whether the acceleration set for the motor is reasonable.
The adjustment of the Pl is similar to the mode used previously for tuning the current loop PI:
start with tuning Kp before introducing Ki, and progressively validate through testing with
increasing values. The parameter's appropriateness is judged by observing the stability trend of
the actual output Ig_CMD, and by comparing the given speed ramp spd_ramp with the actual
filtered speed spd_filt through their following curves, as shown in the diagram below.

Figure 30
. . SPEED -LOOP - PT - PARAMETER -

M1 SPEED KP Q15

- M1_SPEED KI Q15

HH

www.geehy.com Page 24

http://www.geehy.com/

3.5.7

3.6

3.6.1

Document No.: AN1099

27,000
26,000
25,000
24,000
23,000
22,000
21,000
20,000
19,000
18,000
@ 17,000

T 16,000 /
S 15,000

> 14,000
13,000
12,000
11,000
10,000
9,000
8,000
7,000 -
6,000 —~
5,000 N \/P <
4,000

3,000 Dy

2,000

1,000

-1,000
-2,000
-3,000
-4,000
-5,000

1 2 3 4 5 6 7
Time (s)

® Motor_type.Foc.s165pdFilt Metor_type.Foc.s165peedRamp

9 10

® Motor_type.Focstc_IdgCmd.s16g15_Q

Custom Motor Development

From now on, the motor has been successfully operated by you. What follows is to add
application layer logic and other customization developments according to your actual

development needs!!!

Settings of Key Parameters

All parameters in this system are configured in parameter.h of the user layer, mainly including
system parameters, related parameters of a backplane, related parameters of a state machine,

and related parameters of a motor, as follows:
System Parameters

Table 3 System Parameters

Parameter name Parameter description

Set value

SYS_REFV

Supply voltage of the system

3.3 (V)

SYSCLK_HSE_72MHz

Main frequency of the system

72000000 (Hz)

PWMFREQ

PWM frequency

8000 (Hz)

www.geehy.com

Page 25

http://www.geehy.com/

Document No.: AN1099

Parameter name Parameter description Set value
DEAD_TIME PWM dead band time 1.0 (us)
SLOWLOOP_FREQ Control frequency of slow loop 1000 (Hz)
3.6.2 Backplane Hardware Parameters
Table 4 Parameters of Backplane Hardware
Parameter name Parameter description Set value
ADC_REFV ADC reference voltage 3.3 (V)
R_SHUNT Sampling resistance value 0.02 (Q)
CURRENT_OPA_GAIN Amplification factor of operational amplifier 5.0
I_MAX Current standardization reference value 16.5 (A)
UDC_MAX Voltage standardization reference value 69.0 (V)
U_MAX Phase voltage standardization reference value 39.83 (V)
3.6.3 Motor Related Parameters
Table 5 Motor-Related Parameters
Parameter name Parameter description Set value
Rs Phase resistance of motor 0.15 (ohm)
Ls Phase inductance of motor 0.00037 (H)
POLEPAIRS Number of motor pole-pairs 2 (unit)
M1_IQ_KP_Q15 Q-axis current loop KP parameter Q15 format 25000
M1_1Q_KI_Q15 Q-axis current loop Kl parameter Q15 format 8
M1_ID_KP_Q15 D-axis current loop KP parameter Q15 format 25000
M1_ID_KI_Q15 D-axis current loop Kl parameter Q15 format 8
M1_SPEED_KP_Q15 Speed loop KP parameter Q15 format 16384
M1_SPEED_KI_Q15 Speed loop Kl parameter Q15 format 163

3.7 Precautions

(1) Check hardware connections: Check if the connections between the motor, motor driver,
and controller are correct, and if the power supply is stable, and ensure that all interfaces
are inserted and tightened and free of damage or short circuits.

(2) Configuration parameters: Configure the parameters of the controller according to the
specifications of the motor and driver, such as the rated current of the motor, the motor

www.geehy.com

Page 26

http://www.geehy.com/

Document No.: AN1099

®3)

(4)

(5)

(6)

parameters, the number of pole pairs of the motor, and the maximum speed of the motor.
Ensure that all parameters are set correctly.

Conduct a no-load test: Conduct a load test with no motor load installed, to check whether
the motor can start and rotate normally and whether the speed meets the requirements.
Note: It is necessary to verify whether the HALL operation sequence of the motor is
correct. An oscilloscope is used to collect the HALL signal port. Manually rotate the motor
for one turn to confirm the forward and reverse operation sequence of the HALL.

Conduct load test: Conduct a load test with the motor load installed, to check the
performance of the motor under load, such as speed and torque.

Conduct speed PID debugging: Use a PID regulator to control the response speed of the
motor. The response and stability of the motor can be optimized by changing the PID
parameters (note: all parameters are modified in parameter.h). During debugging, the
experimental results should be recorded for future reference.

Conduct performance tests: After the above steps are completed, some performance tests
can be conducted, such as measuring the maximum speed, maximum torque, and
efficiency of the motor. Some testing equipment can be used for measurement, such as a
tachometer, load tester, and power meter.

www.geehy.com Page 27

http://www.geehy.com/

Document No.: AN1099

Actual test waveform

Figure 31 Actual Test Waveform

TKEEHYN%IL(OEGI‘-ILI DS0-¥ 30147, My5Z2330201,

= 1 1.004 2 5.000ms! -170.6ms L

7.55.2022071828: Thu Mar 09

4. 025004,

4.025004,

0.04

BT HR

www.geehy.com Page 28

http://www.geehy.com/

5

Document No.: AN1099

Revision History

Table 6 Document Revision History

Date Revision Revision History
July 26, 2023 1.0 New

Q) Modified the production information form

August 14, 2023 1.1
2 Modified the format

October 19, 2023 1.2 Version iteration supplement
(1) Modified the amplification derivation process of the operational ampilifier.

January 16, 2024 1.3 o) o o
(2) Made some revisions to the wording and details in the description.

www.geehy.com

Page 29

http://www.geehy.com/

Document No.: AN1099

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as
“Geehy”). The contents in this document are protected by laws and regulations of trademark, copyright and software
copyright. Geehy reserves the right to make corrections and modifications to this document at any time. Please read
this document carefully before using Geehy products. Once you use the Geehy product, it means that you (hereinafter
referred to as the “users”) have known and accepted all the contents of this document. Users shall use the Geehy

product in accordance with relevant laws and regulations and the requirements of this document.
1. Ownership

This document can only be used in connection with the corresponding chip products or software products
provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe, modify, edit

or disseminate all or part of the contents of this document for any reason or in any form.

The “#%i” or “Geehy” words or graphics with “®” or “™” in this document are trademarks of Geehy. Other

product or service names displayed on Geehy products are the property of their respective owners.
2. No Intellectual Property License
Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or implicitly

due to the sale or distribution of Geehy products or this document.

If any third party’s products, services or intellectual property are involved in this document, it shall not be
deemed that Geehy authorizes users to use the aforesaid third party’s products, services or intellectual property, unless

otherwise agreed in sales order or sales contract.
3. Version Update
Users can obtain the latest document of the corresponding models when ordering Geehy products.
If the contents in this document are inconsistent with Geehy products, the agreement in thesales order or the

www.geehy.com Page 30

http://www.geehy.com/

Document No.: AN1099

sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or cooperative third-party
testing organization. However, clerical errors in correction or errors caused by differences in testing environment
may occur inevitably. Therefore, users should understand that Geehy does not bear any responsibility for such errors
that may occur in this document. The relevant data in this document are only used to guide users as performance

parameter reference and do not constitute Geehy’s guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test the
applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding standards, safety
or other reliability requirements. If loses are caused to users due to the user’s failure to fully verify and test Geehy

products, Geehy will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN USING THIS
DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL UNDERSTAND THAT THE
PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-EXPORT OR OTHER LAWS OF THE
COUNTIRIES OF THE PRODUCTS SUPPLIERS, GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON
BEHALF OR ITSELF, SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE
TO ABIDE BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF

GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT PERMITTED BY

APPLICABLE LAW.

GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE SUBSEQUENT

www.geehy.com Page 31

http://www.geehy.com/

DESIGN OR USE BY USERS.
7. Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
GEEHY OR ANY OTHER PARTY WHO PROVIDE THE DOCUMENT "AS IS", BE LIABLE FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE DOCUMENT (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR

THIRD PARTIES).
8. Scope of Application
The information in this document replaces the information provided in all previous versions of the document.

© 2023-2024 Geehy Semiconductor Co., Ltd. - All Rights Reserved

Geehy Semiconductor Co.,Ltd.

© Bldg.1, No.83 Guangwan Street, Zhuhai, Guangdong, China ®+86 0756 6299999 @& www.geehy.com

http://www.geehy.com/

	1 General Introduction
	1.1 Project Overview
	1.2 APM32F035 Chip Resources

	2 Hardware Introduction
	2.1 Overall Hardware Circuit
	2.2 Interface Circuits and Settings
	2.2.1 Power circuit
	2.2.2 Phase Current Sampling Circuit
	2.2.3 Hall Detection Circuit
	2.2.4 Overcurrent protection circuit
	2.2.5 Minimum system circuit
	2.2.6 Communication Interface and Button Circuit

	2.3 Physical System Hardware

	3 Software Introduction
	3.1 Overall Program Architecture
	3.1.1 USER Layer
	1.1.1
	3.1.2 Peripheral Driver Layer (HARDWARE Layer)
	3.1.3 Motor Control Drive Layer (MOTOR_CONTROL Layer)
	3.1.4 Geehy Motor Algorithm Layer (Geehy_MCLIB Layer)

	3.2 Introduction to State Machine
	3.3 Top-layer Peripheral Configuration
	3.3.1 PWM Output Configuration
	3.3.2 ADC Configuration
	3.3.3 OPA and COMP Underlying Configuration

	3.4 Calibration Standardization
	3.4.1 Concept of Per Unit
	3.4.2 Per Unitization of the Entire System Software

	3.5 Debugging Development
	3.5.1 Hardware Confirmation
	3.5.2 Peripheral Configuration
	3.5.3 Motor Parameter Configuration
	3.5.4 Tuning and Confirmation of PI Parameters for the Current Inner Loop
	3.5.5 Self-Check of HALL Angle
	3.5.6 Speed Loop Parameter Tuning
	3.5.7 Custom Motor Development

	3.6 Settings of Key Parameters
	3.6.1 System Parameters
	3.6.2 Backplane Hardware Parameters
	3.6.3 Motor Related Parameters

	3.7 Precautions

	4 Actual test waveform
	5 Revision History

