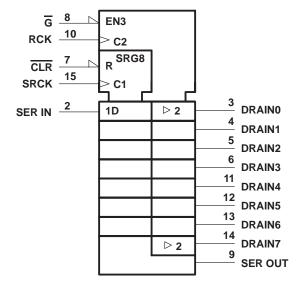

SLIS093C - MARCH 2000 - REVISED APRIL 2005

- Low r_{DS(on)} . . . 7 Ω Typ
- Avalanche Energy . . . 30 mJ
- Eight Power DMOS Transistor Outputs of 100-mA Continuous Current
- 250-mA Current Limit Capability
- ESD Protection . . . 2500 V
- Output Clamp Voltage . . . 33 V
- Enhanced Cascading for Multiple Stages
- All Registers Cleared With Single Input
- Low Power Consumption


description

The TPIC6C596 is a monolithic, medium-voltage, low-current power 8-bit shift register designed for use in systems that require relatively moderate load power such as LEDs. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other low-current or medium-voltage loads.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage registers on the rising edge of the shift register clock (SRCK) and the register clock (RCK), respectively. The storage register transfers data to the output buffer when shift register clear (\overline{CLR}) is high. When \overline{CLR} is low, all registers in the device are cleared. When output enable (\overline{G}) is held high, all data in the output buffers is held low and all drain outputs are off. When \overline{G} is held

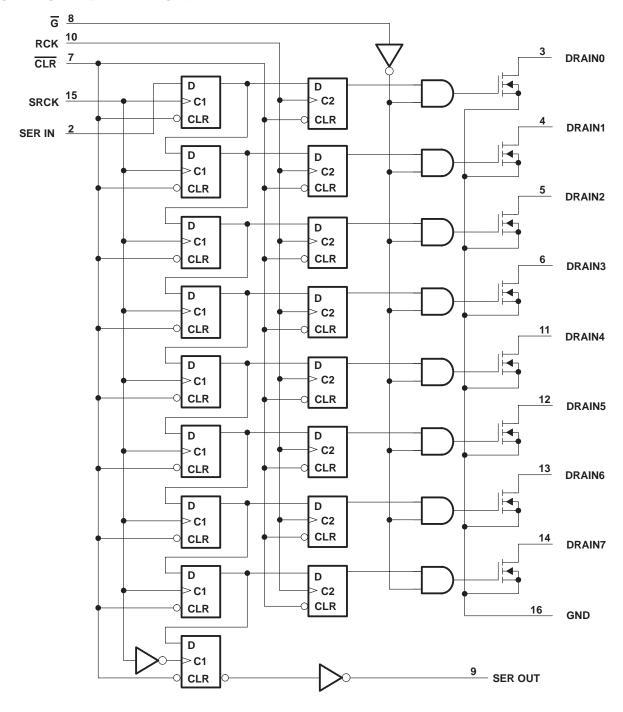
logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

low, data from the storage register is transparent to the output buffers. When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs have sink-current capability. The serial output (SER OUT) is clocked out of the device on the falling edge of SRCK to provide additional hold time for cascaded applications. This will provide improved performance for applications where clock signals may be skewed, devices are not located near one another, or the system must tolerate electromagnetic interference.

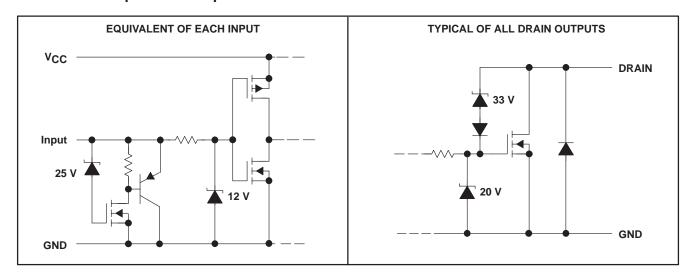
This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either V_{CC} or ground. Specific guidelines for handling devices of this type are contained in the publication *Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies* available from Texas Instruments.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SLIS093C - MARCH 2000 - REVISED APRIL 2005

description (continued)

Outputs are low-side, open-drain DMOS transistors with output ratings of 33 V and 100 mA continuous sink-current capability. Each output provides a 250-mA maximum current limit at T_C = 25°C. The current limit decreases as the junction temperature increases for additional device protection. The device also provides up to 2500 V of ESD protection when tested using the human-body model and the 200-V machine model.


The TPIC6C596 is characterized for operation over the operating case temperature range of -40°C to 125°C.

logic diagram (positive logic)

schematic of inputs and outputs

absolute maximum ratings over recommended operating case temperature range (unless otherwise noted) †

Logic supply voltage, V _{CC} (see Note 1)	
Logic input voltage range, V _I	0.3 V to 7 V
Power DMOS drain-to-source voltage, V _{DS} (see Note 2)	33 V
Continuous source-to-drain diode anode current	
Pulsed source-to-drain diode anode current (see Note 3)	500 mA
Pulsed drain current, each output, all outputs on, I _D , T _C = 25°C (see Note 3)	250 mA
Continuous drain current, each output, all outputs on, I _D , T _C = 25°C	100 mA
Peak drain current single output, I _{DM} ,T _C = 25°C (see Note 3)	250 mA
Single-pulse avalanche energy, E _{AS} (see Figure 4)	30 mJ
Avalanche current, I _{AS} (see Note 4)	200 mA
Continuous total dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T _J	
Operating case temperature range, T _C	–40°C to 125°C
Storage temperature range, T _{stq}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to GND.
 - 2. Each power DMOS source is internally connected to GND.
 - 3. Pulse duration \leq 100 μ s and duty cycle \leq 2%.
 - 4. DRAIN supply voltage = 15 V, starting junction temperature (TJS) = 25°C, L = 1.5 H, IAS = 200 mA (see Figure 4).

DISSIPATION RATING TABLE

PACKAGE	$T_C \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _C = 25°C	T _C = 125°C POWER RATING
D	1087 mW	8.7 mW/°C	217 mW
N	1470 mW	11.7 mW/°C	294 mW
PW	1372 mW	10.976 mW/°C	274 mW

TPIC6C596 POWER LOGIC 8-BIT SHIFT REGISTER

SLIS093C - MARCH 2000 - REVISED APRIL 2005

recommended operating conditions

	MIN	MAX	UNIT
Logic supply voltage, V _{CC}	4.5	5.5	V
High-level input voltage, V _{IH}	0.85 V _{CC}		V
Low-level input voltage, V _{IL}		0.15 V _{CC}	V
Pulsed drain output current, $T_C = 25$ °C, $V_{CC} = 5$ V, all outputs on (see Notes 3 and 5 and Figure 11)		250	mA
Setup time, SER IN high before SRCK↑, t _{SU} (see Figure 2)	15		ns
Hold time, SER IN high after SRCK↑, th (see Figure 2)	15		ns
Pulse duration, t _W (see Figure 2)	40	·	ns
Operating case temperature, T _C	-40	125	°C

NOTES: 3. Pulse duration \leq 100 μ s and duty cycle \leq 2%.

5. Technique should limit $T_J - T_C$ to 10°C maximum.

electrical characteristics, V_{CC} = 5 V, T_{C} = 25°C (unless otherwise noted)

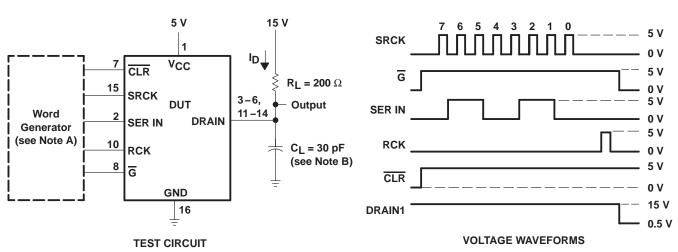
PARAMETER		TEST (CONDITIONS	MIN	TYP	MAX	UNIT
V(BR)DSX	Drain-to-source breakdown voltage	$I_D = 1 \text{ mA}$		33	37		V
V _{SD}	Source-to-drain diode forward voltage	I _F = 100 mA			0.85	1.2	V
	III I I I I I I I I I I I I I I I I I	$I_{OH} = -20 \mu A$,	V _{CC} = 4.5 V	4.4	4.49		
VOH	High-level output voltage, SER OUT	$I_{OH} = -4 \text{ mA},$	V _{CC} = 4.5 V	4	4.2		V
.,	Lave lavel autout value as OFD OUT	$I_{OL} = 20 \mu A$,	V _{CC} = 4.5 V		0.005	0.1	.,
VOL	Low-level output voltage, SER OUT	$I_{OL} = 4 \text{ mA},$	V _{CC} = 4.5 V		0.3	0.5	V
I _{IH}	High-level input current	$V_{CC} = 5.5 V$,	$V_I = V_{CC}$			1	μΑ
I _I L	Low-level input current	V _{CC} = 5.5 V,	V _I = 0			-1	μΑ
	Lasta sometica compat	V _{CC} = 5.5 V	All outputs off		20	200	•
lcc	Logic supply current		All outputs on		150	500	μΑ
I _{CC(FRQ)}	Logic supply current at frequency	fSRCK = 5 MHz, All outputs off,	C _L = 30 pF, See Figures 2 and 6		1.2	5	mA
I _N	Nominal current	$V_{DS(on)} = 0.5 \text{ V},$ $T_{C} = 85^{\circ}\text{C},$	I _N = I _D , See Notes 5, 6 and 7		90		mA
		V _{DS} = 30 V,	V _{CC} = 5.5 V		0.1	0.2	
IDSX	Off-state drain current	V _{DS} = 30 V, T _C = 125°C	V _{CC} = 5.5 V,		0.15	0.3	μΑ
		I _D = 50 mA, V _{CC} = 4.5 V			6.5	9	
rDS(on)	Static drain-source on-state resistance	I _D = 50 mA, T _C = 125°C, V _{CC} = 4.5 V	See Notes 5 and 6 and Figures 7 and 8		9.9	12	Ω
		I _D = 100 mA, V _{CC} = 4.5 V			6.8	10	

NOTES: 5. Technique should limit $T_J - T_C$ to 10°C maximum.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

7. Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at $T_C = 85^{\circ}C$.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_{C} = 25^{\circ}\text{C}$

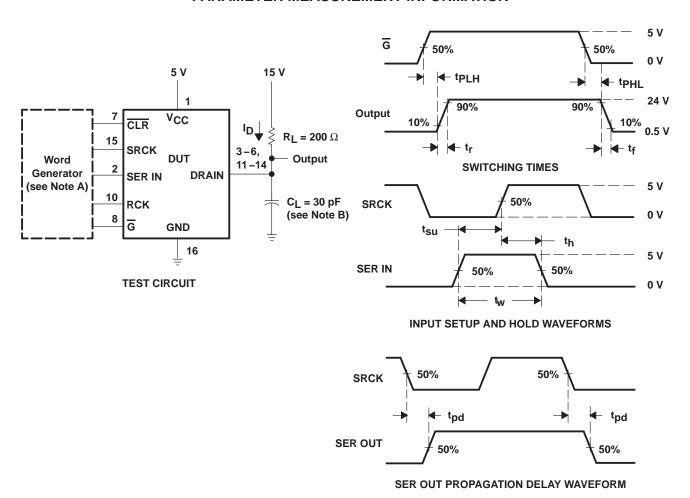

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output from G		80		ns
tPHL	Propagation delay time, high-to-low-level output from \overline{G}	$C_L = 30 \text{ pF}, \qquad I_D = 75 \text{ mA},$	50		ns
t _r	Rise time, drain output	See Figures 1, 2, and 9	100		ns
tf	Fall time, drain output		80		ns
t _{pd}	Propagation delay time, SRCK↓ to SEROUT	$C_L = 30 \text{ pF}, \qquad I_D = 75 \text{ mA},$ See Figure 2	15		ns
f(SRCK)	Serial clock frequency	C _L = 30 pF, I _D = 75 mA, See Note 8		10	MHz
ta	Reverse-recovery-current rise time	$I_F = 100 \text{ mA}, \qquad di/dt = 10 \text{ A/}\mu\text{s},$	100		
t _{rr}	Reverse-recovery time	See Notes 5 and 6 and Figure 3	120		ns

- NOTES: 5. Technique should limit T_J T_C to 10°C maximum.
 - 6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
 - 8. This is the maximum serial clock frequency assuming cascaded operation where serial data is passed from one stage to a second stage. The clock period allows for SRCK → SEROUT propagation delay and setup time plus some timing margin.

thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
	D package			115		
$R_{\theta JA}$	Thermal resistance, junction-to-ambient	N package	All 8 outputs with equal power		85	°C/W
		PW package			108	

PARAMETER MEASUREMENT INFORMATION

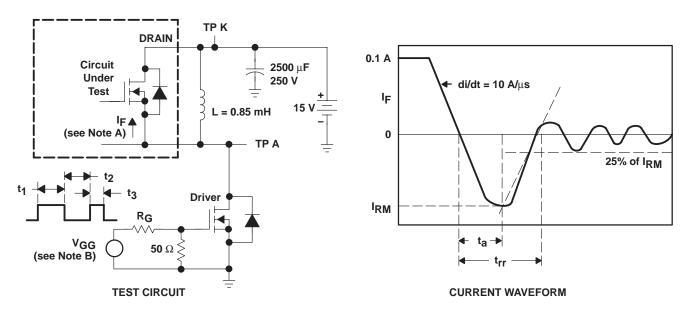


NOTES: A. The word generator has the following characteristics: $t_{\Gamma} \le 10$ ns, $t_{W} = 300$ ns, pulsed repetition rate (PRR) = 5 kHz, $Z_{O} = 50 \ \Omega$.

B. C_L includes probe and jig capacitance.

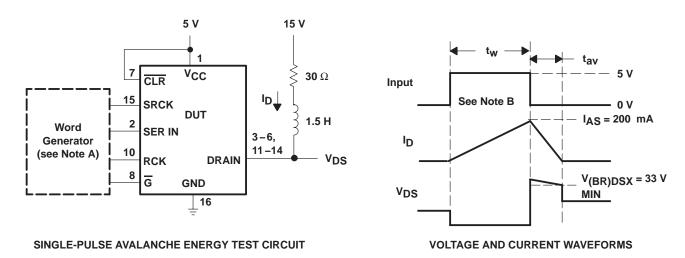
Figure 1. Resistive-Load Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION


NOTES: A. The word generator has the following characteristics: $t_f \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulsed repetition rate (PRR) = 5 kHz, $Z_O = 50 \ \Omega$.

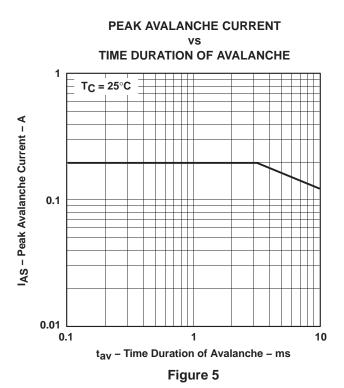
B. C_L includes probe and jig capacitance.

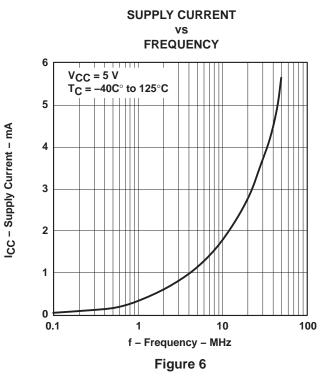
Figure 2. Test Circuit, Switching Times, and Voltage Waveforms



PARAMETER MEASUREMENT INFORMATION

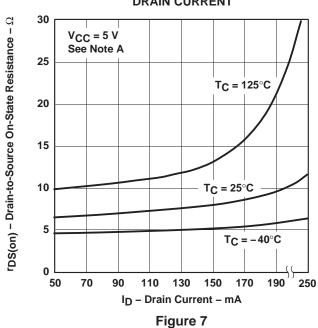
- NOTES: A. The DRAIN terminal under test is connected to the TP K test point. All other terminals are connected together and connected to the TP A test point.
 - B. The V_{GG} amplitude and R_{G} are adjusted for di/dt = 10 A/ μ s. A V_{GG} double-pulse train is used to set I_{F} = 0.1 A, where t_{1} = 10 μ s, t_{2} = 7 μ s, and t_{3} = 3 μ s.


Figure 3. Reverse-Recovery-Current Test Circuit and Waveforms of Source-to-Drain Diode



- NOTES: A. The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_O = 50$ Ω .
 - B. Input pulse duration, t_W , is increased until peak current $I_{AS} = 200$ mA. Energy test level is defined as $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{av}/2 = 30$ mJ.

Figure 4. Single-Pulse Avalanche Energy Test Circuit and Waveforms


TYPICAL CHARACTERISTICS

STATIC

DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT

DRAIN-TO-SOURCE ON-STATE RESISTANCE LOGIC SUPPLY VOLTAGE $extsf{DS(on)}$ – Static Drain-to-Source On-State Resistance – Ω 12 $I_D = 50 \text{ mA}$ T_C = 125°C See Note A 8 $T_C = 25^{\circ}C$ 6 $T_C = -40^{\circ}C$ 2 0 4.0 7.0 V_{CC} - Logic Supply Voltage - V

Figure 8

NOTE A: Technique should limit $T_J - T_C$ to 10°C maximum.

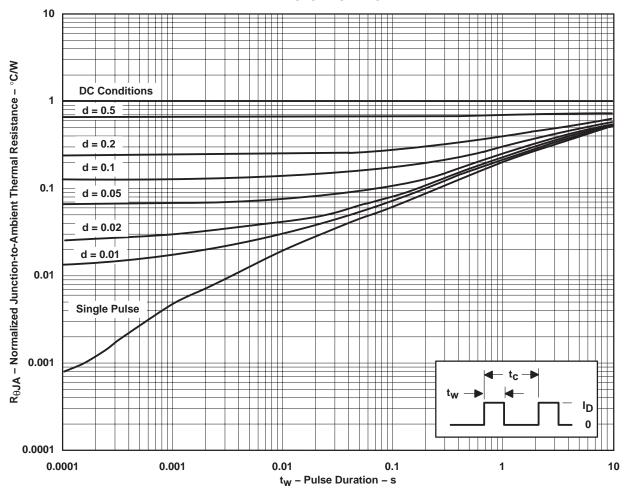
TYPICAL CHARACTERISTICS

SWITCHING TIME CASE TEMPERATURE 140 $I_D = 75 \text{ mA}$ See Note A tr 120 tf 100 Switching Time - ns 80 ^tPLH 60 ^tPHL 40 20 0 -50 -25 75 100 125 T_C – Case Temperature – $^{\circ}C$ Figure 9

NOTE A: Technique should limit $T_J - T_C$ to 10°C maximum.

THERMAL INFORMATION

MAXIMUM CONTINUOUS DRAIN CURRENT OF EACH OUTPUT NUMBER OF OUTPUTS CONDUCTING ID - Maximum Continuous Drain Current of Each Output - A **SIMULTANEOUSLY** 0.25 $V_{CC} = 5 V$ 0.20 0.15 T_C = 25°C 0.10 $T_C = 100^{\circ}C$ T_C = 125°C 0.05 0.00 3 5 6 N - Number of Outputs Conducting Simultaneously


Figure 10

MAXIMUM PEAK DRAIN CURRENT OF EACH OUTPUT NUMBER OF OUTPUTS CONDUCTING **SIMULTANEOUSLY** ID - Maximum Peak Drain Current of Each Output - A 0.30 d = 10%0.25 d = 20%0.20 d = 50%0.15 d = 80%0.10 V_{CC} = 5 V 0.05 T_C = 25°C $d = t_W/t_{period}$ = 1 ms/tperiod 0.00 3 5 N - Number of Outputs Conducting Simultaneously

Figure 11

THERMAL INFORMATION

D PACKAGE[†] NORMALIZED JUNCTION-TO-AMBIENT THERMAL RESISTANCE vs PULSE DURATION

† Device mounted on FR4 printed-circuit board with no heat sink

 $\begin{aligned} \text{NOTES:} \quad Z_{\theta A}(t) &= r(t) \; R_{\theta JA} \\ \quad t_W &= \text{pulse duration} \\ \quad t_C &= \text{cycle time} \\ \quad d &= \text{duty cycle} = t_W / t_C \end{aligned}$

Figure 12

www.ti.com 24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
TPIC6C596D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPIC6C596	Samples
TPIC6C596DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	6C596	Samples
TPIC6C596DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPIC6C596	Samples
TPIC6C596DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	6C596	Samples
TPIC6C596DRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	6C596Q	Samples
TPIC6C596N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TPIC6C596	Samples
TPIC6C596PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	6C596PW	Samples
TPIC6C596PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		6C596PW	Samples
TPIC6C596PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	6C596PW	Samples
TPIC6C596PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		6C596PW	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

PACKAGE OPTION ADDENDUM

24-Jan-2013

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

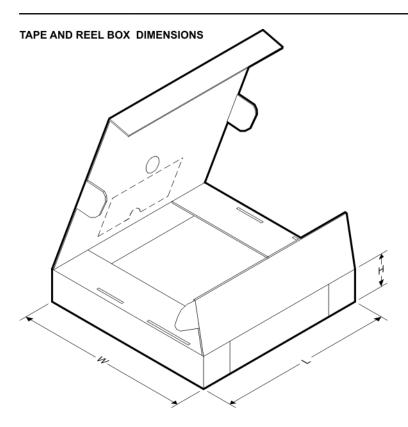
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPIC6C596DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TPIC6C596DRQ1	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TPIC6C596PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TPIC6C596PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 8-Apr-2013

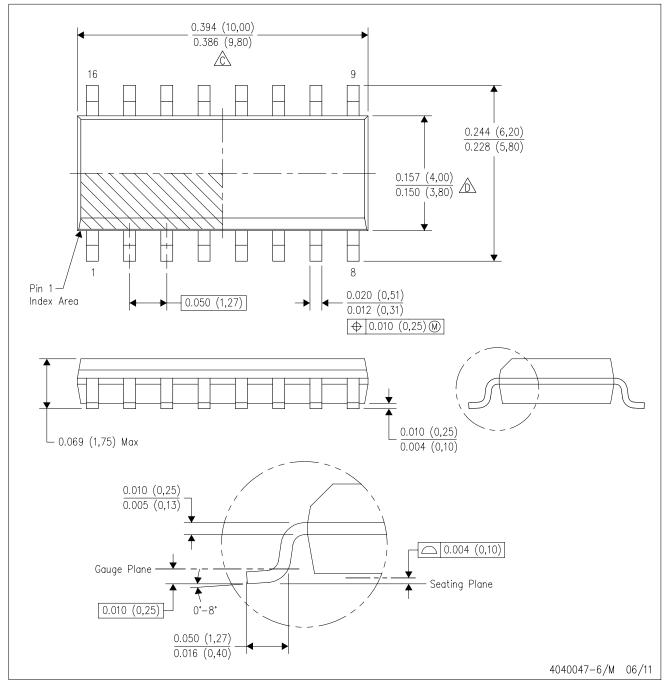
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPIC6C596DR	SOIC	D	16	2500	367.0	367.0	38.0
TPIC6C596DRQ1	SOIC	D	16	2500	367.0	367.0	38.0
TPIC6C596PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
TPIC6C596PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

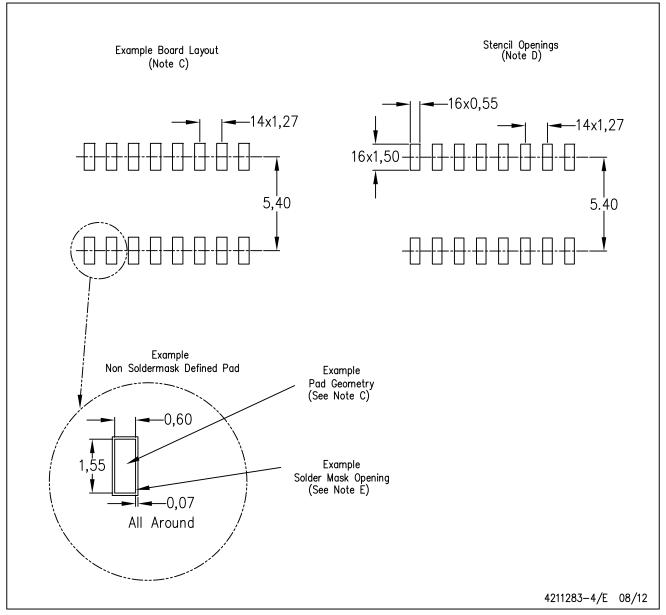
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

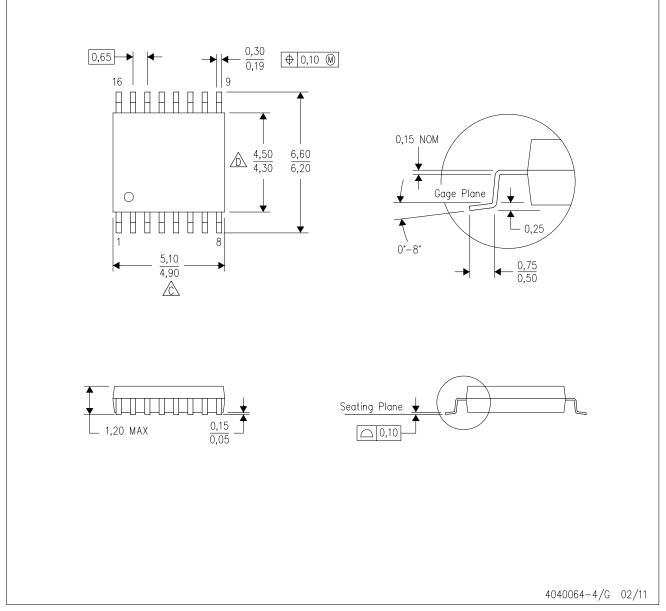
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

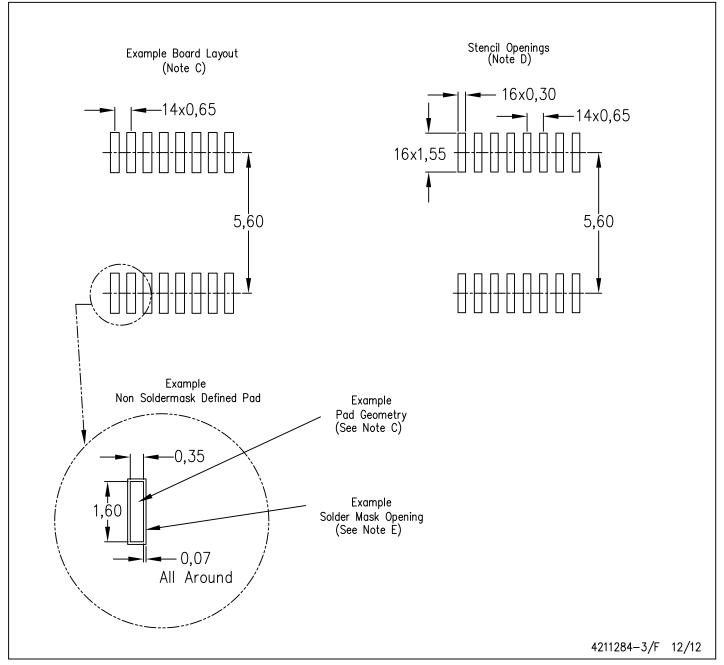
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>