EM12 Reader Module

Introduction

The EM12 is a low cost high performance proximity reader module featuring long range and small dimensions that has been designed specifically for OEM applications. The EM12 features good read range at voltages as low as 5 volts making it ideally suited to a wide variety of applications, particularly access control. The same basic unit can be configured to output most of the common formats, including ASCII, Wiegand26 and Magnetic ABA Track2 data format making it easy to upgrade existing installations.

The reader generates a 125KHz inductive field that extends some way beyond the reader module. When a transponder is placed within the vicinity of the reader module it draws power from this field and providing the field is of sufficient strength the internal microcircuits contained in the transponder begin to function. Data is transferred from the transponder by means of amplitude modulation in such a manner that the transponder varies the rate at which it draws power from the field in a way that corresponds to the internal identity code programmed in this internal memory. These changes in field power can be detected by the reader and converted back into a copy of the original data.

Specifications

Power Requirements 5V DC at 30mA nominal. A linear regulator is

recommended.

Interface RS232 or Standard 26 bit wiegand format

according to customer specifications.

Read Range 12+cm with ISO EM card

Frequency 125KHz standard

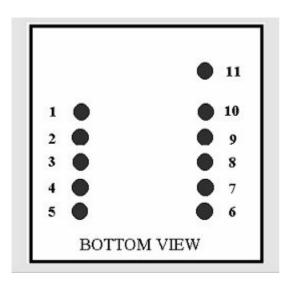
Transponder Read Only.

Audio/visual Indication LED and Buzzer signal output

Dimensions 26mm x 25mm x Height 7mm

Voltage Supply range +4.6V through +5.4V

Response Time Less than 0.1 sec


Version 2.0 Page 1 of 3

EM12

Pin Description & Output data formats

Pin No.	Description	ASCII	Magnet Emulation	Wiegand26		
Pin 1	Zero Volts and Tuning Capacitor Ground	GND 0V	GND 0V	GND 0V		
Pin 2	Strap to +5V	Reset Bar	Reset Bar	Reset Bar		
Pin 3	To External Antenna and Tuning Capacitor	Antenna	Antenna	Antenna		
Pin 4	To External Antenna	Antenna	Antenna	Antenna		
Pin 5	Card Present	No function	Card Present	No function		
Pin 6	Future	Future	Future	Future		
Pin 7	Format Selector (+/-)	Strap to GND	Strap to Pin 10	Strap to +5V		
Pin 8	Data 1	CMOS	Clock	One Output		
Pin 9	Data 0	TTL Data (inverted)	Data	Zero Output		
Pin 10	3.1 kHz Logic	Beeper / LED	Beeper / LED	Beeper / LED		
Pin 11	DC Voltage Supply	+5V	+5V	+5V		

Pin-out diagram

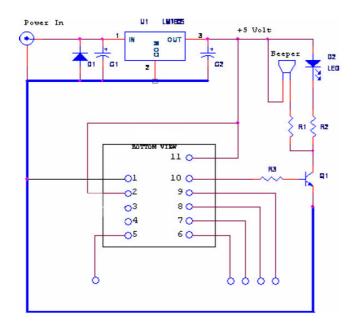
Data Formats

Output Data Structure - ASCII

STX (02h)	DATA (10 ASCII)	CHECK SUM (2 ASCII)	CR	LF	ETX (03h)					
The 1byte (2 ASCII characters) Check sum is the "Exclusive OR" of the 5 bex bytes (10 ASCII) Data characters 1										

Output Data Structure - Wiegand26

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
P	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	0	0	0	0	0	0	0	0	0	0	0	0	Р
	Even parity (E)											C	odd j	parit	y (C)									


 $P\!=\!Parity$ start bit and stop bit

Output Data Magnetic ABA Track2

10 Leading Zeros	SS	Data	ES	LCR	10 Ending Zeros					
ISS is the Start Character of 11010. ES is the end character of 11111. LRC is the Longitudinal Redundancy Check.]										

Version 2.0 Page 2 of 3

Circuit Diagram for the EM12

$\frac{\textbf{COMPONENT LIST}}{R1 = 100R}$ R2 = 1K

R2 = 1K R3 = 1K C1 = 100uF 16V C2 = 100uF 10V Beeper = 2.7-3.5KHz 100R

D1 = 1N4001 D2 = GREEN LED U1 = LM7805

Q1 = UTC8050 (NPN)

Page 3 of 3 Version 2.0