

XT- PICO -XXL

DesignGuide V1.0

1 Description	3
2 Interfaces and functions	3
RS232(TTL)	3
RS485(TTL)	3
I2C	4
SPI	4
TTL 10	4
Ethernet	4
3 Power supply	5
4 Network protocols	5
5 Dimensions	6
6 Pin description	7
Connecting plan	9
7 Wiring diagram	10
RS232	10
RS485	11
SPI	12
I2C	13
SD CARD	14
LCD DISPLAY(SPI)	15
LCD DISPLAY(4BIT)	16
Dataflash(SPI)	17
POE (PowerOverEthernet)	18
8 BUS = I2C	19
Example: EEPROM 24LC16	22
Example: EEPROM AT24C01	23
9 BUS = SPI	24
10 BUS = TTL IO	
11 BUS = LCD	
12 BUS = SDCARD / DFCARD	

1 Description

Thanks to its extremely little dimensions of only **22 x 32 mm** the new **XT-PICO-XXL** module is very well appropriate to be integrated also to very small terminals. A total of **two** bus systems are made available of each four or five switchable interfaces such as **RS232**, **RS485**, **I2C**, **SPI** as well as **TTL-IO**. Even a **POE** (Power over Ethernet) supply is possible since all necessary connections are executed. Lots of functions such as e.g. a 4-bit or SPI LCD display as well as the direct connection of the SD card are directly selectable.

2 Interfaces and functions

Interface (TTL level (3.3V))

RS232	Baud rate Data bits Parity	: up to 1M baud : 7,8 : Odd,Even,None Mark,Space
RS485	Baud rate Data bits Parity	: bis 1MBaud : 7,8 : Odd,Even,None Mark,Space
I2C	Data rate	: up to 400KHz
SPI	Data rate	: up to 25 M bit
TTL-IO	7 or 8 pin for digital input/	output

RS232(TTL)

It is possible to use up to 2 independent individually operating serial interfaces. Each interface can be individually set and it is possible to transfer data rates of up to 1.000.000 bauds. Furthermore, it is possible to additionally set emulations such as modem, Auto-Connect, Connect-On-Data, TCP / UDP - Client with up to 10 parallel connections, TCP/UDP server, tunnel mode with transfers of the signal modes as well as settings, E-Mail Client with sending and receiving of e-mails.

RS485(TTL)

It is possible to use up to 2 independently operating RS485 interfaces. This mode also supports so-called 2-wire components such as e.g. the MAX3072E, since it does not possess a proper control wire. Each interface can be individually set and it is possible to transfer data rates of up to 1.000.000 bauds. Furthermore, it is possible to additionally set emulations such as modem, AutoConnect, Conntect-On-Data, TCP/UDP-Client with up to 10 parallel connections, TCP/UDP server, tunnel mode with transfer of the signal modes as well as settings, E-Mail Client with sending and receiving of e-mails.

I2C

Indeed it is only possible to operate one I2C interface in the master mode; however it is possible to control it via two different ports with e.g. different addresses. A data mode had also been implemented in order to achieve a maximum of flexibility. The interface can be individually set and it is possible to transfer data rates of up to 400.000 bits/sec. Furthermore, it is possible to additionally set emulations such as modem, AutoConnect, Conntect-On-Data, TCP/UDP-Client with up to 10 parallel connections, TCP/UDP server, E-Mail Client with sending and receiving of e-mails.

SPI

It is possible to use up to 2 independently operating SPI interfaces in the master or slave mode. Each interface can be individually set and it is possible to transfer data rates of up to 25.000.000 bits. Furthermore, it is possible to additionally set emulations such as AutoConnect, Conntect-On-Data, TCP/UDP-Client with up to 10 parallel connections, TCP/UDP server, E-Mail-Client with sending and receiving of e-mails.

By the setting in the Setup, the SPI interface can directly operate SD cards, DF cards or Data-Flash components. An implemented Flash-File system with FAT16 structure support the FTP server in order to save data on it or to read data from it. Now it is possible to save own homepages or JAVA – Applets in order to present a proper and individual look to the customers via the WEB server.

SD CARDS:

- Up to 4 GByte
- FAT16
- PC-compatible

DF cards / components:

- Up to 4 GByte
- FAT16
- AT45DB011B,AT45DB021B
 AT45DB041B,AT45DB081B
 AT45DB0161B,AT45DB0321B AT45DB0642, AT45DB1282
 will be directly identified.

The SPI interface can also directly control as SPI display, e.g. the EA DOGM162B-A, which you can directly use via TCP/IP.

TTL IO

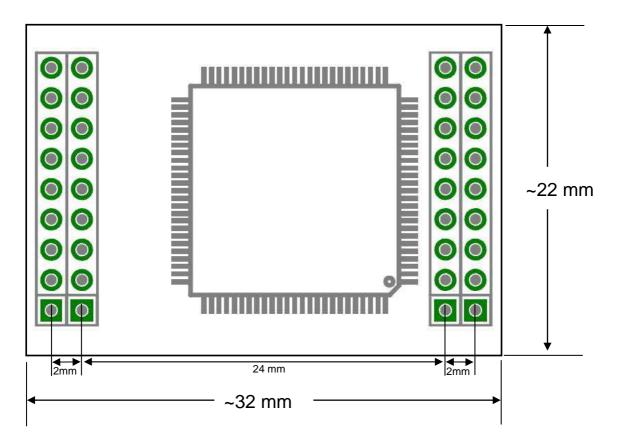
It is possible to directly control up to 15 pins via two interfaces. To do so, there is a proper control mode which can read, switch on or switch off the signals. A tunnel mode allows the automatic transfer of the signal modes.

Ethernet

It can directly be used without any additional components. RJ45 Connector on board.

MDIX (Automatic cable recognition) 10 Half Duplex 10 Full Duplex 100 Half Duplex 100 Full Duplex AutoSensing

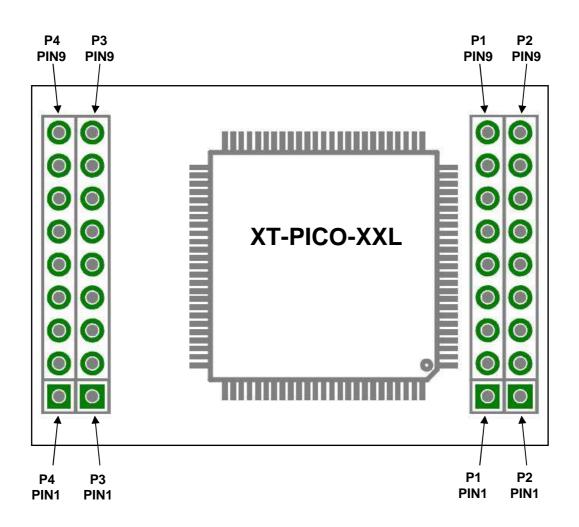
3 Power supply


- 3.3 volts +- 1% low noise, the supply voltage is directly used (0 Ohm)
- 170 mA

4 Network protocols

- 1. IP
- 2. TCP
- 3. UDP
- 4. FTP
- 5. TFTP
- 6. ICMP
- 7. ARP
- 8. SNMP
- 9. LPR
- 10.DHCP
- 11.BOOTP
- 12.DNS
- 13.TELNET
- 14.HTML
- 15.http
- 16. DYNDNS
- 17.SMTP
- 18.POP3
- 19.SYSLOG
- 20.SSL (in preparation)

5 Dimensions

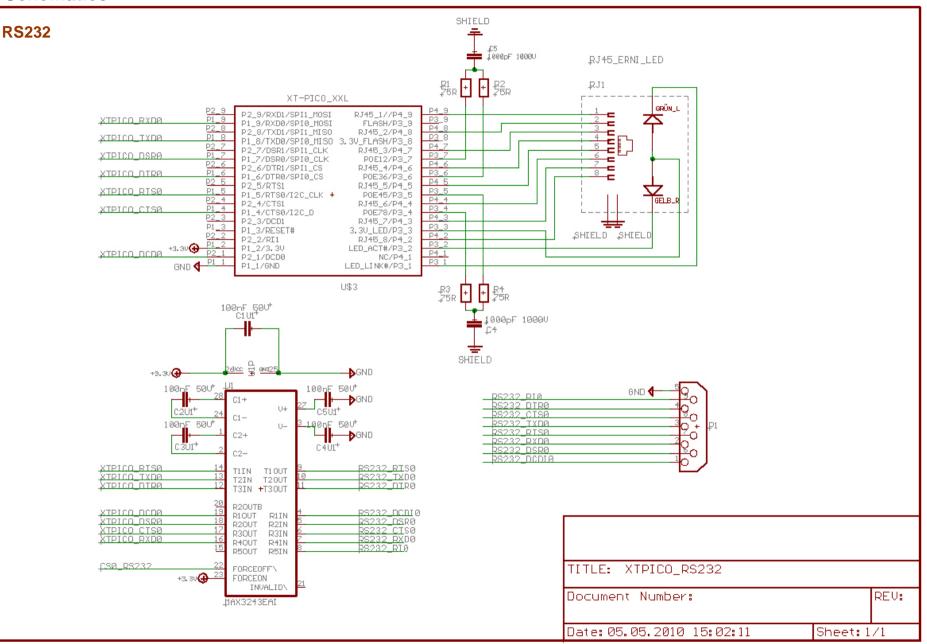

Bottom View

6 Pin description

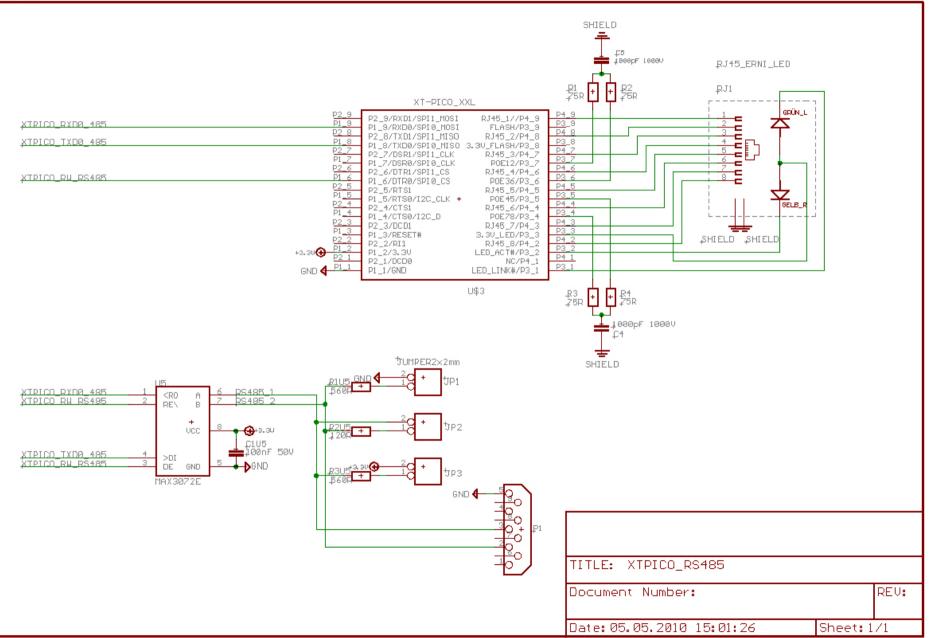
Bottom View

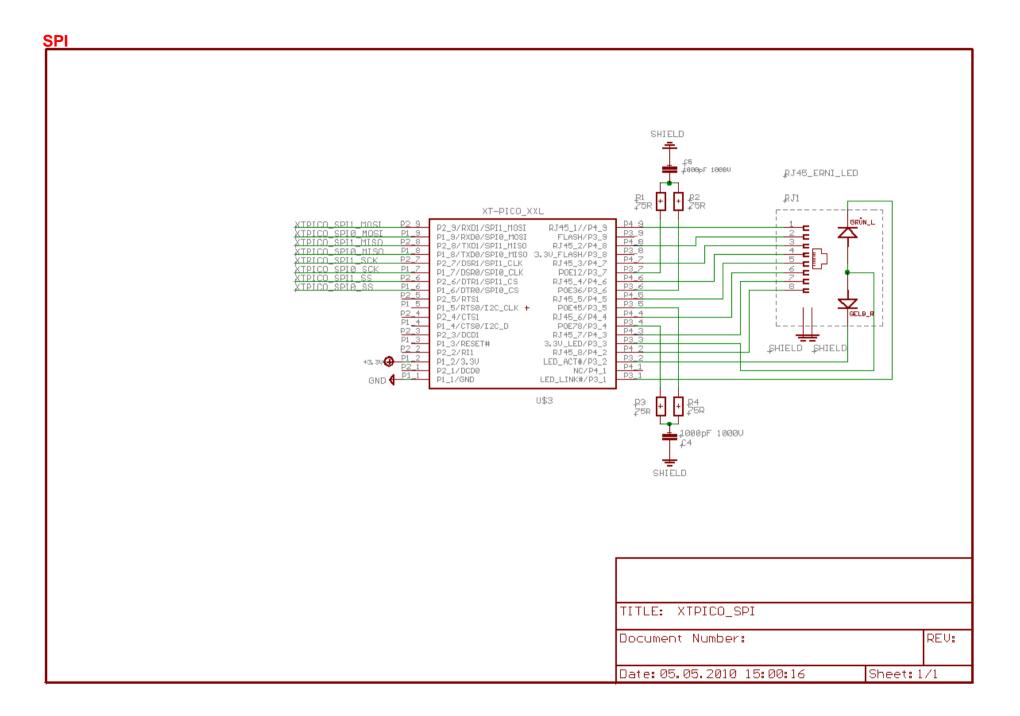
PIN	RS232	DIR	RS485	DIR	I2C	DIR	SPI	DIR	TTLIO	DIR	BUS
P1_1	Ground	in	Ground	in	Ground	in	Ground	in	Ground	in	Р
P1_2	+3.3Volt	in	+3.3Volt	in	+3.3Volt	in	+3.3Volt	in	+3.3Volt	in	W
P1_3	Reset\	in	Reset\	in	Reset\	in	Reset\	in	Reset\	in	R
P1_4	CTS0	in			SDA0	in/out			PIN4	in/out	
P1_5	RTS0	out			SCL0	out			PIN3	in/out	
P1_6	DTR0	out	RD/WR0	out			SSO\	in/out	PIN5	in/out	В
P1_7	DSR0	in	1				SCK0	in/out	PIN6	in/out	- U
P1_8	TXD0	out	TXD0	out			MISO0	in/out	PIN2	in/out	S
P1_9	RXD0	in	RXD0	in			MOSIO	in/out	PIN1	in/out	
P2_1	DCD0	in/out							PIN7	in/out	1
P2_2	RI1	in/out	1			1			PIN8	in/out	
P2_3	DCD1	in/out							PIN7	in/out	1
P2_4	CTS1	in		1					PIN4	in/out	В
P2_5	RTS1	out							PIN3	in/out	U
P2_6	DTR1	out	RD/WR1	out			SS1\	in/out	PIN5	in/out	S
P2_7	DSR1	in					SCK1	in/out	PIN6	in/out	2
P2_8	TXD1	out	TXD1	out			MISO1	in/out	PIN2	in/out	
P2_9	RXD1	in	RXD1	in			MOSI1	in/out	PIN1	in/out	<u> </u>
P3_1	LED_LINK\										Ľ
P3_2	LED_ACT\										E
P3_3	+3.3Volt		8						1		D
P3_4	POE78	E									
P3_5	POE45		8								P
P3_6	POE36										O E
P3_7	POE12										
P3_8	+3.3Volt										
P3_9	FLASH				Do	n't use					- N C
P4_1	NC		1								1
P4_2	RJ45_8		1								
P4_3	RJ45_7										L
P4_4	RJ45_6			1					1		Α
P4_5	RJ45_5										N
P4_6	RJ45_4			1					1		R
P4_7	RJ45_3								1		J
P4_8	RJ45_2										4
P4_9	RJ45_1										5

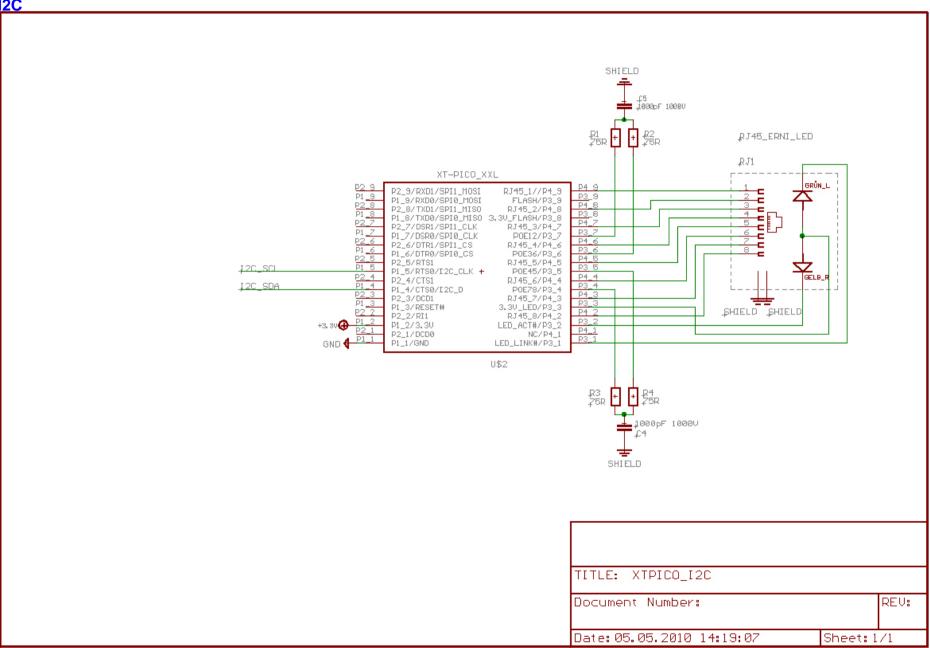
Alles was Sie noch benötigen, ist eine RJ45 – Buchse und zwei LED's


Hinweis:

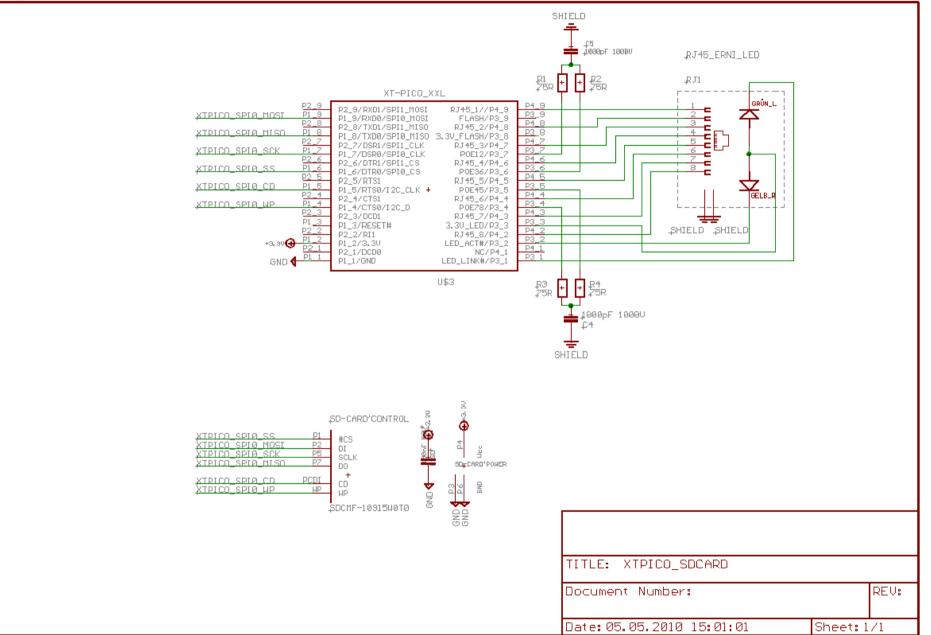
Die LED – Anschlüsse können direkt verwendet werden. Die Vorwiderstände sind schon auf dem **XT-PICO-XXL** vorhanden. Auch die RJ45 – Anschlüsse können direkt an eine RJ45 – Buchse angeschlossen werden. Der erforderliche Übertrager ist auf dem **XT-PICO-XXL** ebenfalls vorhanden.

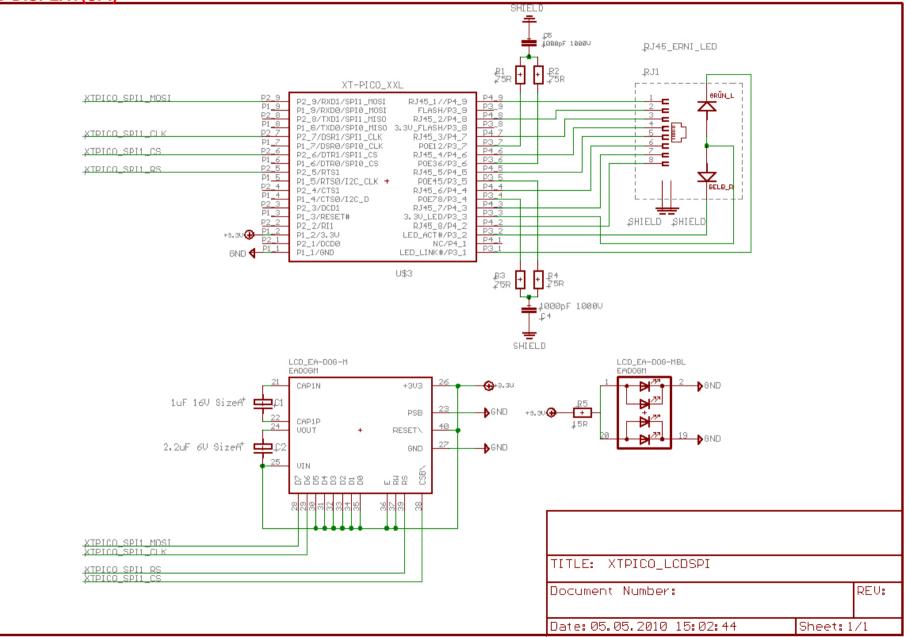

Connecting plan


PIN	R\$232	RS485 MAX3072	12C	SPI	SD-CARD	DataFlash AT45xxx	LCD EADOGM	TTLIO	LCD 4Bit HD44780	BUS
P1_4	CTS0		SDA0		WP			PIN4	RW	
P1_5	RTS0		SCL0		CD		RS	PIN3	EN	
P1_6	DTR0	RE/DE		SSO\	CSI	CSI	CS\	PIN5	DATA4	В
P1_7	DSR0			SCK0	SCLK	SCLK	SCLK	PIN6	DATA3	U
P1_8	TXD0	DI		MISO0	SO	SO		PIN2	DATA2	S 1
P1_9	RXD0	RO		MOSIO	SI	SI	MOSI	PIN1	DATA1	•
P2_1	DCD0							PIN7	CS	
P2_2	RI1							PIN8		
P2_3	DCD1							PIN7	CS	
P2_4	CTS1				WP			PIN4	RW	в
P2_5	RTS1				CD		RS	PIN3	EN	U
P2_6	DTR1	RE/DE		SS1\	CS	CSI	CS\	PIN5	DATA4	S
P2_7	DSR1			SCK1	CLK	SCLK	SCLK	PIN6	DATA3	2
P2_8	TXD1	DI		MISO1	SO	SO		PIN2	DATA2	
P2_9	RXD1	RO		MOSI1	SI	SI	MOSI1	PIN1	DATA1	

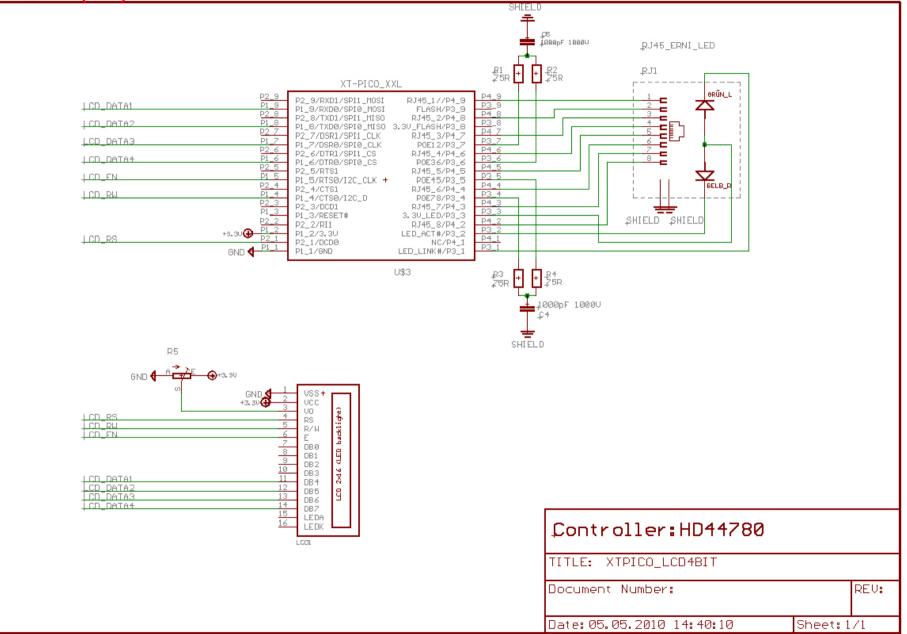

Schematics

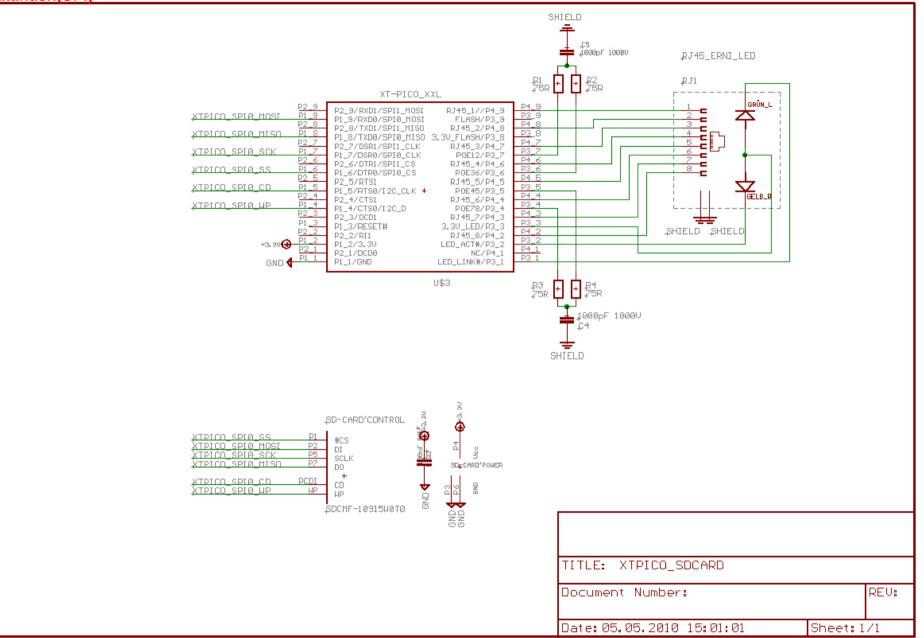
RS485

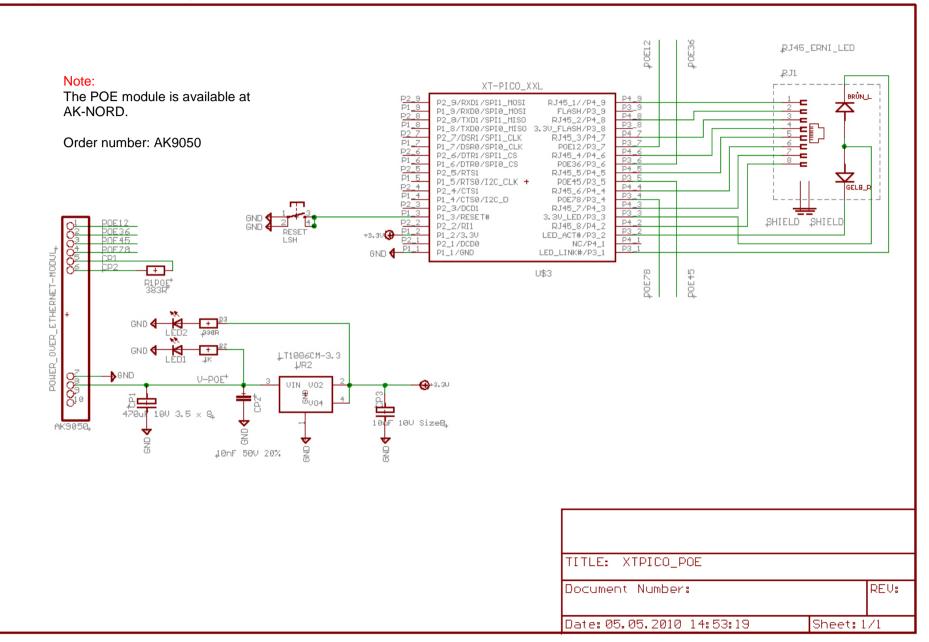




I2C


SD CARD


LCD DISPLAY(SPI)


LCD DISPLAY(4BIT)

Dataflash(SPI)

POE (PowerOverEthernet)

8 BUS = I2C

Inter-Integrated Circuit (IIC)

The inter-IC bus (IIC) is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange between devices. Being a two-wire device, the IIC bus minimizes the need for large numbers of connections between devices, and eliminates the need for an address decoder.

.

SETUP I2C

🛃 C:\WINDOWS\System32\te	elnet.exe	- 🗆 🗙
	===== CONFIG MENU ====================================	
1 = Slave Addr 2 = Baudrate 3 = Data Control 4 = Data Poll*10ms	= 100000 = N	
5 = Flow Control 6 = RTS Protocol		
<pre>a = Emulation b = EmuCode c = BUS d = InputTimeOut*10ms e = Local Port f = Local SSL Port</pre>	$ \begin{array}{rcl} = & 0000 \\ = & 12C \\ = & 0 \\ = & 1002 \end{array} $	
STATE=HW ONLINE		
RTS = LOW CTS = LOW		
For example:'1=2'		
[Q = QUIT] Please enter	your choice:	-

1 = Slave Addr	=	Address of slave. Possible values 0-127
2 = Baudrate	=	Baud rate on the I2C bus. Possible values 1-400000
3 = Data Control	=	N = no data control (please refer to next page) D = protocol mode (please refer to next page)
4 = Data Poll*10ms	=	only if DataControl=N is active. Then every xxx ms it is controlled, if there are data available on the Slave.
5 = Flow Control	=	No function
6 = RTS Protocol	=	No function

a=Emulation:	=	۲. ۲. ۲.	The following emulations can be used: MODEM,EMAIL,TCPCLIENT,UDPCLIENT,UDPSERVER,TCPSERVER <i>Please find examples of applications and detailed explanations regarding</i> <i>emulations in the main manual of the AK XXL products.</i>
b=Emucode:	=		for customer-specific functions
c=BUS	=	Ĩ	I2C Each bus can be reconfigured by entering an admissible value as for example "RS232, RS485, I2C, SPI, LCD, SDCARD or DFCARD" in the menu item "BUS". However, it is only possible to activate and configure the selected BUS after resetting.
e = Local Port:	=	٢	Here you can define the TCP/IP or UDP port, which is approved for the corresponding serial interface. If you enter here 23 (Telnet) or 80 (Browser), the device can no longer be configured via this service. But the output of the data (requests) of browser or Telnet will be performed directly via the serial interface.
f = Local SSL Port:	=		Has got the same function as the Local Port, but it is used for encoded SSL communication.

All other menus are described in the main manual of the AK XXL products.

Standard mode:

Settings:

		-3		
1	=	Slave Addr	=	0
2	=	Baudrate	=	100000
3	=	Data Control	=	N
4	=	Data Poll*10ms	=	10
5	=	Flow Control	=	N

In this setting the XT-PICO module polls the I2C-Slave on the address **0** every **100ms** and tries to obtain data from it. Depending on the other setting such as TCP-Client, modem etc., such data is being processed. As soon as a connection is available via TCP/IP as soon as data are received, it will try to send the data to the I2C-Slave to the address **0**.

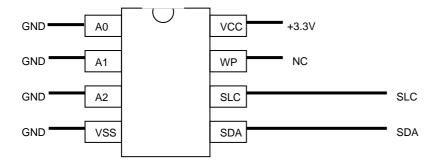
Protocol mode:

 Settings:

 1 = Slave Addr
 = 0

 2 = Baudrate
 = 400000

 3 = Data Control
 = P


 4 = Data Poll*10ms
 = 10

 5 = Flow Control
 = N

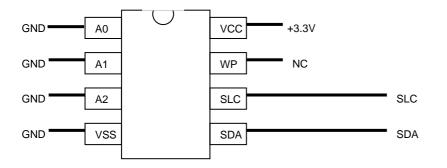
Using this setting it will be possible to directly access the interface via TCP/IP and to directly address the I2C-Slave by means of corresponding commands such as WRITE and READ.

WRITE:	0x02,0x00,0x0A,0x03,0x50,0x02,0x00,0x00,0x57,0x00,0x01,0xnn,0x03						
	0x02 0x00,0x0A	STX Len (10 Bytes) follows	always 2 Byte				
	0x00,0x0A 0x03	function code (with all messages)	always 2 byte				
	0x50	Slave Address					
	0x02	Count Internal Address					
	0x00,0x00	Internal Address 0x00,0x00	Count(0-4 Byte)				
	0x57	W = WRITE	counc(o i bycc)				
	0x00,0x01	write 1 byte	always 2 Byte				
	0xnn	Byte to write					
	0x03	ETX					
READ:	0x02,0x00,0x09,	0x03,0x50,0x02,0x00,0x00,0x52,0x00,0	x02,0x03				
	0x02	STX					
	0x00,0x09	Len (9 Bytes) follows	always 2 Byte				
	0x03	function code (with all messages)					
	0x50	Slave Address					
	0x02	Count Internal Address					
	0x00,0x00	Internal Address 0x00,0x00	Count(0-4 Byte)				
	0x52	R = READ					
	0x00,0x02	read 2 byte	always 2 Byte				
	0x03	ETX					
Mag							
MSG:		unction code = $0x00$)					
	—	unction code = $0x01$) unction code = $0x02$)					
	-	nction code = 0x02)					
	ACK and NAK (It						
Answers:							
NAK	0x15,'S'	NAK STX					
	0x15,'E'	NAK ETX					
	0x15,'A'	NAK Slave Address					
	0x15,'C'	NAK Command					
	0x15,'L'	NAK Len					
	0x15,'B'	NAK Buffer					
	0x15,'R',	NAK Read and Data we could read					
	0x15,'W',nn,nn	NAK Write and nn,nn = Data we could	write				
ACK	0x06,'R'	ACK Read and Data					
	0x06,'W'	ACK Write					

Example: EEPROM 24LC16

Settings:

		3-		
1	=	Slave Addr	=	0
2	=	Baudrate	=	400000
3	=	Data Control	=	Р
4	=	Data Poll*10ms	=	10
5	=	Flow Control	=	N


Write "HALLO"

WRITE: 0x02,0x00,0x0D,0x03,0x50,0x01,0x00,0x57,0x00,0x05,0x48,0x41,0x4C, 0x4C,0x4F,0x03 ANSWER: 0x06,0x57

Read "HALLO"

WRITE:	0x02,0x00,0x08,0x03,0x50,0x01,0x00,0x52,0x00,0x05,0x03
ANSWER:	0x06,0x52,0x48,0x41,0x4C,0x4C,0x4F

Example: EEPROM AT24C16

Settings:

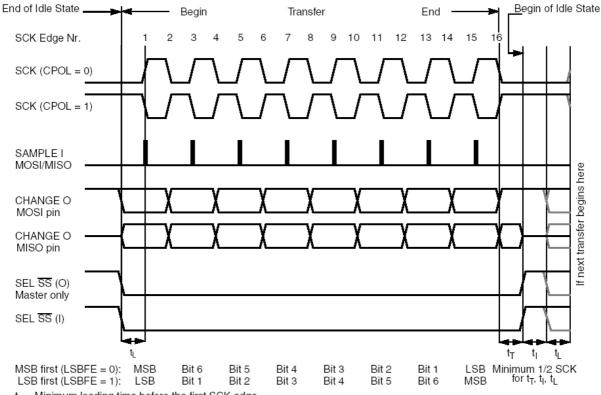
1	=	Slave Addr	=	0
2	=	Baudrate	=	400000
3	=	Data Control	=	Р
4	=	Data Poll*10ms	=	10
5	=	Flow Control	=	Ν

Write "HALLO"

WRITE: 0x02,0x00,0x0E,0x03,0x50,0x02,0x00,0x00,0x57,0x00,0x05,0x48,0x41, 0x4C,0x4C,0x4F,0x03 ANSWER: 0x06,0x57

Read "HALLO"

 WRITE:
 0x02,0x00,0x09,0x03,0x50,0x02,0x00,0x00,0x52,0x00,0x05,0x03


 ANSWER:
 0x06,0x52,0x48,0x41,0x4C,0x4C,0x4F

9 BUS = SPI

Serial Peripheral Interface (SPI)

The SPI-bus is a 4-wire serial communications interface which is used by many microprocessor peripheral chips. The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that is standard for many microprocessors and other peripheral chips. It provides support for a bandwidth (**25MBit**) network connection amongst CPUs and other devices supporting the SPI.

SPI bus is basically a relatively simple synchronous serial interface which is used to connect low speed external devices using a quite little number of wires. SPI (serial peripheral interface) is an interface standard defined by Motorola. A synchronous clock shifts serial data into and out of the microcontrollers in blocks of 8 bits.

 t_L = Minimum leading time before the first SCK edge

 t_{T} = Minimum trailing time after the last SCK edge

 t_I = Minimum idling time between transfers (minimum \overline{SS} high time)

SETUP SPI

🛃 C:\WINDOWS\System32\te	elnet.exe	- 🗆 🗙
	==== CONFIG MENU ====================================	
1		
	= M = 1000000(1,010,(42))	
2 = Bitrate 3 = Databits	= 1000000(1.019.642) = 8	
3 = Databits 4 = CPOL	= 8 = 1	
5 = CPHA	= 0	
6 = Data Control		
7 = Data Poll*10ms		
8 = Flow Control		
9 = RTS Protocol	= 0	
a = CS Control	= S	
b = Emulation	= TCPSERVER	
c = EmuCode	= 0000	
d = BUS	= SPI	
e = InputTimeOut*10ms		
f = Local Port		
g = Local SSL Port	= 0	
RTS = LOW CTS = LOW	STATE=HW ONLINE	
For example:'1=M'		
[Q = QUIT] Please enter	your choice:	•

1 = Master/Slave	=	Mode M = MASTER S = SLAVE
2 = Bit rate	=	Cycle clock on the SPI bus. Possible values 1-25.000.000Bit/s
3 = Databits	=	Possible values 8-16
4 = CPOL	=	Clock Polarity possible values 0,1
5 = CPHA	=	Clock Phase possible values 0,1
6 = Data Control	=	N = no data control (please refer to next page) P = protocol mode (please refer to next page) D = Downstream. Protocol modes without return data.
7 = Data Poll*10ms	=	Only if DataControl=N is active. Then the slave is controlled every xxx ms if it has got data.
8 = Flow Control	=	Additional flow control via RTS/CTS hardware lines. N = no flow control H = hardware flow control.
9 = RTS Protocol	=	Signal statuses of RTS 0 = ALWAYS = RTS always low 1 = RTS_FOLLOWS_CTS = RTS follows CTS 3 = RTS_IND_CONNECTION_N = Shows a TCP/IP connection (LOW) 4 = RTS_IND_CONNECTION_I = Shows a TCP/IP connection (HIGH)
a = CS Control	=	Functionality of CS-Line in the master mode S = CS = Low at start of the data stream. B = CS = Low at every byte.

a=Emulation:	=	The following emulations can be used: MODEM,EMAIL,TCPCLIENT,UDPCLIENT,UDPSERVER,TCPSERVER <i>Please find examples of applications and detailed explanations regarding</i> <i>emulations in the main manual of the AK XXL products.</i>
b=Emucode:	=	for customer-specific functions
c=BUS	=	SPI Each bus can be reconfigured by entering an admissible value as for example "RS232, RS485, I2C, SPI, LCD, SDCARD or DFCARD" in the menu item "BUS". However it is only possible to activate and configure the selected BUS after resetting.
e = Local Port:	=	Here you can define the TCP/IP or UDP port, which is approved for the corresponding serial interface. If you enter here 23 (Telnet) or 80 (Browser), the device can no longer be configured via this service. But the output of the data (requests) of browser or Telnet will be performed directly via the serial interface.
f = Local SSL Port	:=	Has got the same function as the Local Port, but it is used for encoded SSL communication

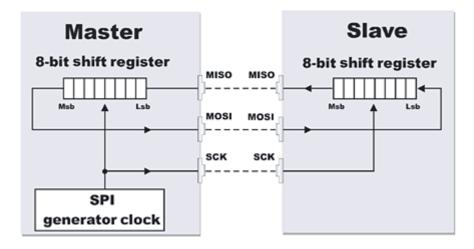
۲.

All other menus are described in the main manual of the AK XXL products.

Standard mode:

Settings:

1 = Master/Slave	= M
2 = Bitrate	= 1000000(1.019.642)
3 = Databits	= 8
4 = CPOL	= 1
5 = CPHA	= 0
6 = Data Control	= N
7 = Data Poll*10ms	= 10
8 = Flow Control	= N
9 = RTS Protocol	= 0


In this mode the SPI interface is absolutely transparent. I.e. no data will be sent to the SPI-Slave as long as no data are being received. The user has got the option to control the data flow by himself. Therefore, in order to receive data from the SPI-Slave, there must first be a connection available via the TCP/IP and it is necessary to send data from the Client (Remote). Such data will then be directly sent to the SPI-Slave.

Example:

There is a TCP/IP connection available and the SPI-Slave has to return on byte "0x33" in response to a 3 byte query e.g. "0x01, 0x00, 0x33".

Remote	XT-PICO	SPI-Slave	
0x01, 0x00, 0x33 ->	0x01, 0x00, 0x33 ->	->	
0xnn, 0xnn, 0xnn <-	0xnn, 0xnn, 0xnn <-	<-	
0xnn ->	0xnn ->	->	
0x33 <-	0x33 <-	<-	
	or (if the SPI–Slave is rapid eno	ugh)	
0x01, 0x00, 0x33, 0xnn->	0x01, 0x00, 0x33, 0xnn ->	->	
0xnn, 0xnn, 0xnn ,0x33 <-	0xnn, 0xnn, 0xnn, 0x33 <-	<-	

The data which are marked by "nn" do not include any relevant information. However, it is necessary to keep in mind that one bit is being received for each bit which is leaving the Master. (Refer to illustration)

Protocol mode:

Settings:

1 = Master/Slave	= M
2 = Bitrate	= 1000000(1.019.642)
3 = Databits	= 8
4 = CPOL	= 1
5 = CPHA	= 0
6 = Data Control	= P
7 = Data Poll*10ms	= 10
8 = Flow Control	= N
9 = RTS Protocol	= 0

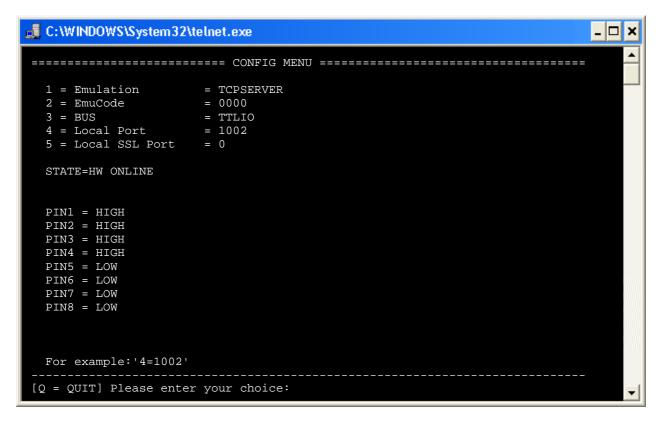
Using these settings, the XT-PICO module polls the SPI-Slave every **100ms** by sending a 0x00 and tries to obtain data from it. The slave as well as the master has the option to separate the data from non-relevant data "0xnn". Each data byte which is sent or received needs to be preceded by 0x01 in order to signalize that it is a correct data byte.

Example:

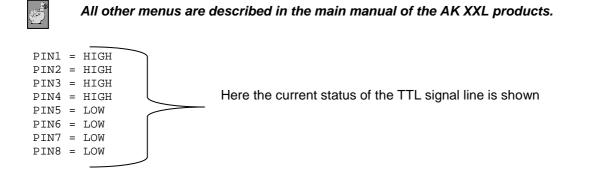
		Master	Slave	Data
Idle running		0x00 ->	<- 0x00	none
Master is sending		0x01,0x33 ->	<- 0x00, 0x00	Slave is receiving 0x33
Slave is sending		0x00,0x00 ->	<- 0x01, 0x44	Master is receiving 0x44
Master+Slave sending	are	0x01,0x33,0x01,0x33 ->	<- 0x01, 0x44, 0x01, 0x44	

Note:

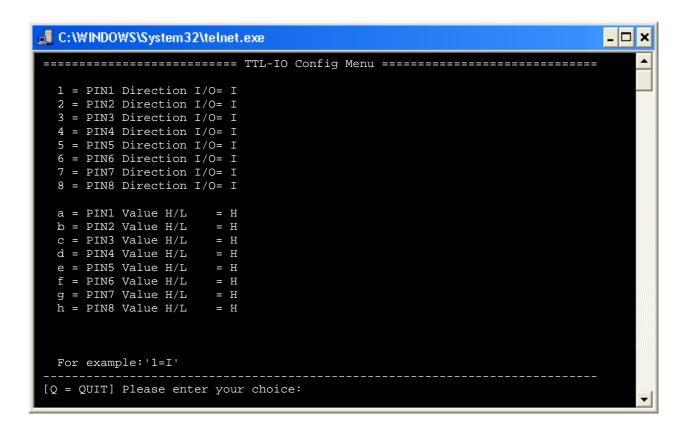
The Data-Poll-Timeout is only considered in the idle running mode. In the sending or receiving mode it tries as soon as possible to send or to receive data. Please keep in mind that the transmittance speed needs to be selected in a way that the Slave will also have the possibility to make the corresponding data available.

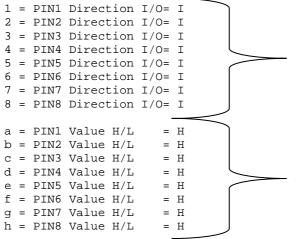

10 BUS = TTL IO

The TTL IO (input/output) mode makes available digital signal lines on the BUS1 7 and on the BUS2 8. It is possible to configure them either as output or as input. It is possible to switch them via a protocol which is described in detail in the annex.

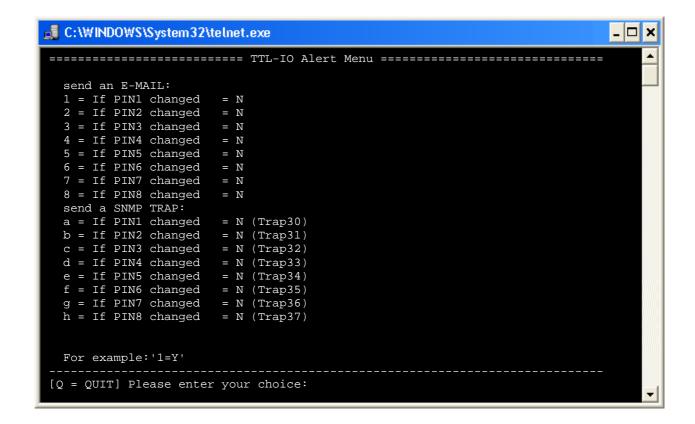

Features:

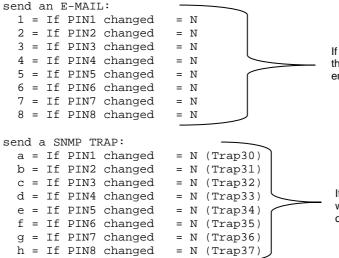
15 i/o switchable digital signal lines Input/output adjustable for each PIN. Standard +3.3V TTL digital signals


SETUP TTL IO



1=Emulation:	=	The following emulations can be used: MODEM,EMAIL,TCPCLIENT,UDPCLIENT,UDPSERVER,TCPSERVER <i>Please find examples of applications and detailed explanations regarding</i> <i>emulations in the main manual of the AK XXL products.</i>
2=Emucode:	=	for customer-specific functions
3=BUS	=	TTLIO Each bus can be reconfigured by entering an admissible value as for example "RS232, RS485, I2C, SPI, LCD, SDCARD or DFCARD" in the menu item "BUS". However, it is only possible to activate and configure the selected BUS after resetting.
4 = Local Port:	=	Here you can define the TCP/IP or UDP port, which is approved for the corresponding serial interface. If you enter here 23 (Telnet) or 80 (Browser), the device can no longer be configured via this service. But the output of the data (requests) of browser or Telnet will be performed directly via the serial interface.
5 = Local SSL Por	t:=	Has got the same function as the Local Port, but it is used for encoded SSL communication


🛃 C:\WINDOWS\System32\	telnet.exe
	===== TTLIO Connection Menu ====================================
<pre>1 = Emulation 2 = EmuCode 3 = Setup Timeout 4 = Selection (M/S) 5 = Mode (C/A/T)</pre>	
<pre>a = DNS/IP:PORT b = DNS/IP:PORT c = DNS/IP:PORT d = DNS/IP:PORT e = DNS/IP:PORT f = DNS/IP:PORT g = DNS/IP:PORT h = DNS/IP:PORT i = DNS/IP:PORT j = DNS/IP:PORT</pre>	
For example:'a=192.16 [Q = QUIT] Please enter	
1 = Emulation	This is the same option as in the TTLIO Config menu
2 = EmuCode	This is the same option as in the TTLIO Config menu
3 = Setup Timeout	Determines how long it will be tried to establish a connection to the target if it is not immediately accessible Example: 3=10
4 = Selection (M/S)	Using this setting, it is possible to choose between the connection types SINGLE and MULTI. SINGLE means that the data will be transmitted to the first target which is entered in the list, if it is available. If the first target is not available, the device will try to connect itself to the second target and then to the third target, etc. In doing so, the Setup Timeout means how long it is being tried to connect the device to the corresponding target. In the operating mode MULTI, the data will be transmitted to all targets at a time. Example: 4=M
5 = Mode (C/A/T)	Here it is possible to select the operating mode. This will influence the mode only for the emulation TCP and UDPCLIENT. The peculiarities of the single options are described in the chapter "Emulations (operating modes)" of the main manual. Example: 5=C
a = DNS/IP:PORT	Using this setting, you can determine the 1^{st} target address (IP or DNS) and the first TARGET PORT if you use the TCP or UDPCLIENT emulation. TARGET address and TARGET PORT will be separated by a colon. All data which are incoming on the serial interface will be automatically sent to the entered target. Example: a=192.168.0.2:6000
<pre>b = DNS/IP:PORT c = DNS/IP:PORT d = DNS/IP:PORT e = DNS/IP:PORT f = DNS/IP:PORT g = DNS/IP:PORT h = DNS/IP:PORT i = DNS/IP:PORT j = DNS/IP:PORT</pre>	 With the options "b" to "j" it is possible to determine other TARGET addresses. In the MULTI mode all addresses will be opened at a time and the data will be sent. It is possible to process 10 targets at a time. In the SINGLE mode the other TARGETS will be addressed one after another if the first one is not available.



Using these settings, it is possible to determine if the single PINs shall act as input or output when starting the interface. It is also possible to set this function via the protocol during operation. Please find an explanation on the following pages.

Using these settings, it is possible to determine if the single PINs are HIGH or LOW when starting the interface. This function can also be changed via the protocols during operation. Please find an explanation on the following pages.

If the sending data are correctly entered in the SMTP menu and if the SMTP function had been activated, an e-mail will be sent to the entered recipient, if different events are occurring.

If the SNMP-Traps are activated in the SNMP menu, SNMP-Traps will be sent to the set server when the described events are occurring.

C:\WINDOWS\System32\telnet.exe	- 🗆 ×
======================================	······
RX	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
TX	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	
00 00 00 00 00 00 00 00 00 00 00 00 00	<
[Q = QUIT] Please enter your choice:	
	-

In the Dump menu of the TTLIO-BUS only the item TX is relevant, since no data will be transferred using this BUS variant but only lines are switched. Under TX it is possible to check the protocol commands which are incoming via the network.

Control the IO – Pins of the XT-PICO-XXL:

You always have to send two bytes. The first is the command byte and the second byte is the pin value

For example:

In order to configure PIN9 from the XT-PICO to an output, you have to send following control characters:

Commands:

= Read Pin
= Clear Pin
= Set Pin
= Configure Pin to Input
= Configure pin to Output
= Clear Pullup
= Set Pullup

11 BUS = LCD

Using this special mode, it is possible to control LCD displays. Currently entered displays are the EADOGM and the HD44780.

C:\WINDOWS\System32\telnet.exe			×
	=== CONFIG MENU ====================================		
1 = Emulation 2 = EmuCode 3 = BUS 4 = Local Port 5 = Local SSL Port	= LCD = 1003		
6 = Display 7 = Display Columns 8 = Controller Columns	= 16/Line		
c = CPOL	= 8		
For example:'4=1002'			
[Q = QUIT] Please enter your choice:			-

1=Emulation:	=	The following emulations can be used: MODEM,EMAIL,TCPCLIENT,UDPCLIENT,UDPSERVER,TCPSERVER <i>Please find examples of applications and detailed explanations regarding</i> <i>emulations in the main manual of the AK XXL products.</i>
2=Emucode:	=	for customer-specific functions
3=BUS	=	LCD Each bus can be reconfigured by entering an admissible value as for example "RS232, RS485, I2C, SPI, LCD, SDCARD or DFCARD" in the menu item "BUS". However, it is only possible to activate and configure the selected BUS after resetting.
4 = Local Port:	=	Here you can define the TCP/IP or UDP port, which is approved for the corresponding serial interface. If you enter here 23 (Telnet) or 80 (Browser), the device can no longer be configured via this service. But the output of the data (requests) of browser or Telnet will be performed directly via the serial interface.
5 = Local SSL Port	:=	Has got the same function as the Local Port, but it is used for encoded SSL communication

All other menus are described in the main manual of the AK XXL products.

6	=	Display	Columns	=	EADOGM or HD44780
7	=	Display	Columns	=	Using this setting, it is possible to indicate the display fields existing on the display per row
8	=	Controll	ler Column:	s=	Using this setting, it is possible to enter the display elements which are made available by the display controller

The values are all preset and compliant to the display. However, these values are only relevant for the SPI display EADOGM.

a = Bitrate	=	Bit rate on the SPI bus. Possible values 1-25.000.000 bit/sec.
b = Databits	=	Possible values 8-16
C = CPOL	=	Clock Polarity possible values 0,1
5 = CPHA	=	Clock Phase possible values 0,1

12 BUS = SDCARD / DFCARD

C:\WINDOWS\System3	2\telnet.exe _ 🗖 3	×
	CONFIG MENU ==================================	-
1 = Master/Slave 2 = Bitrate 3 = Databits 4 = CPOL		
5 = CPHA	= 0	
a = BUS	= SDCARD	
Card state Manufacturer Pages PageSize Size (MB)	= SD = 1.987.584 = 512	
For example:'4=1002		
[Q = QUIT] Please ent	er your choice:	-

If no card is inserted into the slot:

Card	state	=	not	detected
Card	info	=	not	identified

If a card is inserted into the slot:

Card state	=	detected
Manufacturer	=	SD
Pages	=	1.987.584
PageSize	=	512
Size (MB)	=	970

The values are all preset and compliant to most cards.

=

=

1 = Master/Slave = An SD card / DF card can only be operated in the Master mode

Clock Phase possible values 0,1

- 2 = Bitrate
- Bit rate on the SPI bus. Possible values 1-25.000.000 bit/sec.

Most cards can be operated with a speed of 4 M bit.

3 = Databits

- Most cards can be
- Possible values 8
- Clock Polarity possible values 0,1
- 5 = CPHA

4 = CPOL

a = BUS

SDCARD

Each bus can be reconfigured by entering an admissible value as for example "RS232, RS485, I2C, SPI, LCD, SDCARD or DFCARD" in the menu item "BUS". However, it is only possible to activate and configure the selected BUS after resetting.